
Internship Report: Computer Vision in OCaml &

Computation Graph Optimisation

Pierre Vandenhove

pierre.vdhove@gmail.com

11th December 2018

Supervisors: Dr Anil Madhavapeddy and Dr Liang Wang

OCaml Labs, Computer Laboratory, University of Cambridge

1

mailto:pierre.vdhove@gmail.com


Contents

1 Introduction 3

2 Computer Vision with Owl 4

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Mask R-CNN network . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Feature extractor . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Proposal generation . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 State of the implementation . . . . . . . . . . . . . . . . . . . . . 7

3 Computation graph optimisation 8

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Memory allocation problem . . . . . . . . . . . . . . . . . . . . . 9

3.3 Allocation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Minor contributions to Owl 17

List of Figures

1 Output of Mask R-CNN. . . . . . . . . . . . . . . . . . . . . . . . 5

2 A simple program and its computation graph. . . . . . . . . . . . 9

3 Optimal pebbling of a computation graph. . . . . . . . . . . . . . 10

4 Other pebbling of a computation graph. . . . . . . . . . . . . . . 11

5 Memory allocation of the computation graph of a neural network. 15

6 Time and memory values of well-known neural networks with and
without using a computation graph. . . . . . . . . . . . . . . . . 16

2



1 Introduction

This report describes what was produced during my internship at OCaml Labs
from 9 August to 12 November 2018.

It consists of

• an implementation of the Mask R-CNN network using OCaml’s numerical
library Owl (see Section 2);

• a new memory allocation algorithm for Owl’s computation graph module
(see Section 3);

• some minor contributions to Owl (see Section 4);

• a technical report about Owl’s computation graph module1;

• a blog post about the internship2.

I would like to deeply thank Christopher Troestler for the idea to apply for
an internship at OCaml Labs, Anil Madhavapeddy and Gemma Gordon for the
amazing internship opportunity, Liang Wang for building the great library Owl
and for his continuous support throughout the internship, and Jianxin Zhao for
his help and the frequent conversations about Owl.

1The technical report is available at https://arxiv.org/abs/1812.03770.
2The blog post is available at http://ocaml.xyz/project/pierre_cgraph.html.

3

https://arxiv.org/abs/1812.03770
http://ocaml.xyz/project/pierre_cgraph.html


2 Computer Vision with Owl

2.1 Motivation

My initial task was to find a way to automatically segment and categorise pic-
tures and videos, using OCaml’s numerical library Owl [Wan17], created by
Liang Wang. Many machine learning tasks had already been successfully por-
ted to Owl (for character recognition3, image style transfer4,...). There was even
an implementation of Google’s Inception neural network [SLJ+15], which can
already label images very accurately.

Computer vision is a field dealing with many different automated tasks whose
goal is to give high-level descriptions of images or videos. It has been applied
to a wide variety of domains ranging from highly technical (automatic tagging
of satellite images, analysis of medical images,...) to more mundane (categorise
pictures in your phone, make your face into an emoji,...). It has seen tremend-
ous progress since 2012, when A. Krizhevsky et al. [KSH12] used the first deep
learning approach to computer vision, crushing all their opponents in the Im-
ageNet challenge5. It has therefore evolved quite a lot since Inception was first
described in 2014 and it was relevant to implement a more recent and involved
network with Owl.

Inception performs single-label image classification — it works well when
there is one large object in an image, but gets easily confused when there are
lots of small ones. Other programs are meant to classify the pixels on an image in
different categories (semantic segmentation such as in [LSD15]), or to detect the
position of the objects on an image (object detection). In 2017, the Mask R-CNN
(Mask Region-based Convolutional Neural Network) architecture [HGDG17] was
published and with sufficient training, it can solve all these problems at once: it
can detect objects on an image, label each of them and provide a binary mask to
tell which pixels belong to the objects. This network has now been implemented
in Owl. An example of output can be seen in Figure 1. A video processed with
the network is also available6.

2.2 The Mask R-CNN network

I will briefly outline the main parts of the architecture of Mask R-CNN and how
it stands out from its predecessors. The Owl implementation of the inference
mode is available at https://github.com/pvdhove/owl-mask-rcnn. The code
was mostly ported from an existing Keras/TensorFlow implementation [Abd17].
At the beginning of each paragraph, I refer to the file in which each part is
implemented in the src/model/ directory of the GitHub repository. The file

3https://github.com/owlbarn/owl/blob/master/examples/lazy_mnist.ml
4http://demo.ocaml.xyz/neuraltrans.html
5http://image-net.org/challenges/LSVRC/2012/results.html
6https://www.youtube.com/watch?v=ruM7S-cqk-k

4

https://github.com/pvdhove/owl-mask-rcnn
https://github.com/owlbarn/owl/blob/master/examples/lazy_mnist.ml
http://demo.ocaml.xyz/neuraltrans.html
http://image-net.org/challenges/LSVRC/2012/results.html
https://www.youtube.com/watch?v=ruM7S-cqk-k


Figure 1: Image processed by the Owl implementation of Mask R-CNN.

5



linking all the parts together is model.ml. See [HGDG17] for more general
details about Mask R-CNN.

2.2.1 Feature extractor

resnet.ml The picture is first fed to a convolutional neural network in order
to extract features on the image. The first few layers detect low-level features
(edges and basic shapes) but as you go deeper into the network, these features
are assembled to detect higher level features (people, cars). Five of these lay-
ers (called feature maps) of various sizes, both high- and low-level, are then
passed on to the next parts. This implementation chooses Microsoft’s Res-
Net101 [HZRS16] as a feature extractor.

model.ml These feature maps are then transformed with a Feature Pyramid
Network [LDG+17] to share information between all the maps, such that each
map knows about both high- and low-level features at different resolutions.
Later on, the size of the objects will determine which feature map is used to
analyse them.

2.2.2 Proposal generation

regionProposalNetwork.ml, proposalLayer.ml To try to locate the objects,
about 250K overlapping rectangular regions (anchors) are generated. A small
convolutional network (a Region Proposal Network, introduced in 2015 by the
predecessor of Mask R-CNN [RHGS15]) scans the feature maps and quickly as-
sociates to each of them a number that could be called the ’objectness’ of that
region. The 1000 best anchors are then selected according to their objectness
(higher is better). Anchors that overlap too much with each other are elimin-
ated, to avoid detecting the same object multiple times. Each selected anchor
is also refined in case it was not perfectly centered around the object.

2.2.3 Classification

featurePyramidNetwork.ml, detectionLayer.ml All anchor proposals from
the previous layer are resized to a fixed size and fed into a 10-layer neural
network that assigns to each of them probabilities that it belongs to each class
(the network is pre-trained on fixed classes; changing the set of classes requires
to re-train the whole network). Note that this step does not take as much time
for each anchor as a full-fledged image classifier (such as Inception) since it
reuses the precomputed feature maps from the Feature Pyramid Network —
there is no need to go back to the original picture. The class with the highest
probability is chosen for each proposal and thanks to the class predictions, the
anchor proposals are even more refined. Proposals classified in the ’background’

6



class are deleted. Eventually, only the proposals with an objectness over some
threshold are kept, and these are the final detections.

featurePyramidNetwork.ml The only thing left to do is to generate a binary
mask on each object. This is handled by a small convolutional neural network
which outputs for each detected bounding box a small square of values between
0 and 1. This square is resized to the original size of the bounding box with
bilinear interpolation, and pixels with a value over 0.5 are tagged as being part
of the object.

2.3 State of the implementation

A demonstration of the network is available online7. If you want to apply it
on large pictures, videos or experiment a bit more, see the code8. Pre-trained
weights on 80 classes of common objects are provided, which have been conver-
ted from the aforementioned TensorFlow implementation [Abd17].

A few things can still be improved. First of all, to fully support training,
some operations are still missing both in Owl and in my implementation of Mask
R-CNN. Then to make it even faster, especially for videos, GPU support would
be incredibly helpful. Owl’s GPU support is already fully functional, but some
work is still necessary to apply it to Mask R-CNN.

7http://demo.ocaml.xyz/mrcnn.html
8https://github.com/pvdhove/owl-mask-rcnn

7

http://demo.ocaml.xyz/mrcnn.html
https://github.com/pvdhove/owl-mask-rcnn


3 Computation graph optimisation

3.1 Motivation

The first noticeable issue after porting Mask R-CNN to Owl is that the memory
usage, in inference mode, is huge. The network has over 400 layers and to avoid
reinitialising the network for every picture, it is good to keep its input size fixed
and to resize instead all the images to that size — a larger size takes more time
and memory but yields more accurate results. A reasonable input size for this
network is a 1024-pixel-wide square. Unfortunately, obtaining detections for
one picture with this size required over 11 GB of RAM. As a comparison, the
TensorFlow implementation only uses 1 GB.

What was not used yet is the computation graph module of Owl. The fol-
lowing definition is inspired by [LINK18].

Definition 3.1 (Computation graph). Let O be a set of operations such that
Var ∈ O.

A computation graph (or dataflow graph) over O is a graph G = (V,E, λ, U),
where V is the set of vertices of G, E ⊆ V × V is the set of directed edges,
λ : V → O is a function mapping each vertex to an operation o ∈ O, U ⊆ V ×V
is the set of update edges. We require that the graph (V,E) is acyclic and that
for all (u, v) ∈ U , λ(v) = Var.

Each vertex of the computation graph represents an operation. An edge
(u, v) ∈ E means that the output of vertex u will be used as an input by the
operation of vertex v — it defines the dependencies between the operations.
With a distributed system, different vertices of the graph might be computed
on different machines. The graph is then also a description of the network
linking the vertices together. You can see an example of a program and its
computation graph in Figure 2. In this example, to evaluate the output vertex
x5, we need to specify values for the variables x1 and x3. If after evaluating it
once, we only modify the value of x3, there is no need to re-evaluate x2.

The set of update edges U is a mechanism to allow reusing the value of some
vertices at the end of an evaluation as variables for the next evaluation. This is
necessary to express recurrent neural networks or neural network training (for
which at the end of each iteration, weights are updated). Note that the graph
(V,E ∪ U) can contain cycles. Notice also that the graph is not necessarily
simple in the graph-theoretical meaning: two vertices can be linked by more
than one edge (for instance with the computation x← y ∗ y).

Representing the structure of a program as a computation graph has sev-
eral advantages, especially for computationally-intensive code dealing with large
multi-dimensional arrays. A really useful one is that prior to evaluating the
nodes, you can optimise the structure of the graph: for instance, useless calcu-
lations such as adding an array with nothing but zeros can be removed, common
patterns can be merged into one node and executed more efficiently, etc. Thanks

8



x2 ← 2− x1

x4 ← x2 ∗ x3

x5 ← sinx4

=⇒
sin: x5*: x4

Var: x3

-: x2

Var: x1

Const: 2

Figure 2: A simple program and its computation graph.

to these optimisations, the number of nodes of Mask R-CNN drops from 4095
to 3765. Another really important feature in this case is the ability to prealloc-
ate a memory space to each node, to decrease the overall memory consumption
and reduce the garbage collector overhead. This is especially relevant to reduce
the memory consumption of Mask R-CNN. Changing the memory allocation
algorithm is my main contribution to Owl.

The following standard definition will be used later in the report.

Definition 3.2 (Topological ordering). Let G = (V,E, λ, U) be a computation
graph with n vertices. A topological ordering of G is a bijection γ : V →
{0, 1, . . . , n− 1} such that for all (u, v) ∈ E, γ(u) < γ(v).

3.2 Memory allocation problem

Allocating memory to each vertex of a computation graph is a problem similar
to one that was first described in 1973 [Set73] to look for an efficient algorithm
for register allocation, using an abstraction called the pebble game. We recall
its definition.

Definition 3.3 (Pebble game). The pebble game is played on a directed acyclic
graph (DAG). Each vertex can store at most one pebble. The game begins
with no pebble on any vertex. At each step, the player can perform one of the
following moves:

1. if a vertex v has no predecessor (input vertex ), the player can place a
pebble on v.

2. if all predecessors of a vertex v are pebbled, the player can place a pebble
on v or slide a pebble from one of its predecessors to v.

9



3. the player can remove any pebble from a vertex (and reuse that pebble
later).

The goal of the game is to place a pebble at least once on some fixed output
vertices of the graph. A pebbling strategy is a sequence of moves following the
rules of the game and reaching the goal. The space used by a pebbling strategy
is the maximum number of pebbles used simultaneously during the execution of
the strategy. The time of a strategy is the number of times a pebble is placed
on a vertex (without counting the removals of pebbles).

This relates to the memory allocation of the computation graph if we see
pebbles as memory blocks used to store the output value of a vertex. We
assume that the values of the input vertices are known and can be loaded into
memory anytime (move 1). We can only compute the value of a vertex if all its
predecessors are simultaneously stored in memory (move 2). The sliding move
means that the memory of a vertex can be overwritten by its successor during
its computation (inplace reuse). We can always reuse a memory block from
another vertex (move 3).

By pebbling a graph in topological order and removing pebbles when they
are not needed anymore, it is always possible to pebble each vertex exactly once
(time is minimal). However, such a strategy may not always yield a minimal
space value. If we consider the example from Figure 2, we notice that we can
pebble it with a space of 2 and a time of 6 (see Figure 3).

54

3

2

1

0

=⇒
54

3

2

1

0

=⇒
54

3

2

1

0

=⇒
54

3

2

1

0

=⇒
54

3

2

1

0

=⇒
54

3

2

1

0

Figure 3: Optimal pebbling of a computation graph, using moves 1 → 2 → 3 → 1 →
2 → 2.

The values of space and time of this strategy are both minimal. We now
consider another example in Figure 4. It is possible to pebble this graph with
a time of 6 and a space of 3 (by leaving a pebble on vertex 1 until the end). It
is also possible to pebble it with a time of 8 and a space of 2 (by repebbling 0
and 1 once 4 is pebbled). However, one single strategy can not be minimal for
both time and space.

10



5

4

3

2

10

Figure 4: One pebbling strategy cannot reach the minimal values of both space and
time for this computation graph.

We see that there is a time-space tradeoff and that depending on the space
constraints, it might be worth computing the same vertex more than once. If a
graph has certain properties, some algorithms can obtain interesting bounds on
space complexity without sacrificing much of the time complexity. For instance,
[CXZG16] uses the specific shape of the computation graph when training a
neural network to devise a memory allocation strategy with a square root bound
on space complexity by means of two computations of the forward pass. You
can find more examples in [Sav97, Chapter 10]: there even exists a family
of graph Gk such that using k pebbles takes exponential time at best, but
using k+ 1 pebbles takes minimal time. This illustrates that excessive memory
minimisation is not always desired in practice.

The problem of whether there exists a pebbling strategy using less than k
pebbles has been proven to be PSPACE-complete [GLT79]. If we do not allow
any repebbling of vertex, the same problem is NP-complete [Set73], and even
hard to approximate within any constant factor [APW12]. Since computation
graphs can have a few thousand vertices, we will not consider exact algorithms
to allocate memory.

For more information on pebbling games, see [Sav97, Nor13].

3.3 Allocation algorithm

The initially implemented strategy to allocate memory to a node u in Owl’s
computation graph module was simply to reuse the memory of a direct prede-
cessor with same output shape as u when that is possible. This optimisation
allows to decrease the memory consumption of Mask R-CNN from 11 GB to 7
GB, which is much better but still quite far from the 1 GB of the TensorFlow
implementation.

We can actually make it much more performant by sharing memory between
nodes

• that are not necessarily a parent/child pair;

• that do not have the same output size (by allocating a large block of
memory once, without necessarily using all of it all the time).

11



Compared to the pebble game (Definition 3.3), we need to be careful of a
few more caveats, listed below.

• Some operations, dependently on how they are implemented, can not over-
write some of their parents while they are being carried out. In the pebble
game, this corresponds to forbidding the sliding of one pebble for some
parents of some operators. To take this into account, we partition the
parents of each operator in two sets, the ones that can be overwritten
during the computation of the operation and the ones that cannot.

• We need to take into account that some vertices have different output
sizes. In the pebble game, this means that we want to assign to each
pebble a size that must be larger than the output size of the vertices the
pebble is placed on. What we actually want to minimise is the sum of
the sizes of the pebbles rather than the number of pebbles (this is still
equivalent to the original problem in the specific case where all the output
sizes are equal).

• We want to always keep the value of some vertices in memory for practical
purposes (for example, vertices v such that λ(v) = Const, output vertices,
vertices u such that (u, v) ∈ U , neural network weights). These vertices
cannot share their block of memory.

We explain in more detail the new memory allocation performed in Owl when
running the code on a CPU device. For practical reasons, since the algorithm
should be efficient for arbitrary graphs, we assume that each vertex can only be
computed once (i.e. keeping a minimal time value). The chosen algorithm is
inspired by the one used by MXNet [CLL+15].

A first challenge is to find an efficient way to share memory between tensors
which do not have the same output size. Since Owl’s multi-dimensional array
module is based on OCaml’s Bigarray, we can use the reshape and sub_left

functions in the following way:

module N = Owl . Dense . Ndarray . S
let block = N. empty [ | b l o c k s i z e | ] in
let memory = N. reshape (N. s u b l e f t b lock 0 node numel ) shape

The block variable is a one-dimensional array of sufficient size. We reuse the
node_numel first elements of block and reshape that one-dimensional array
to the right shape. Multiple nodes can thus base their memory on the same
block, as long as their size is smaller than the size of the block, with no loss of
performance.

The topological ordering γ we use for allocation and evaluation is given
by traversing the graph from the outputs using a post-order DFS. By going
through γ in order, we can notice when the memory of a vertex becomes useless
by keeping a counter of the number of times its value has been used by one of its

12



successors. When all of its successors have been evaluated, the memory block
of the vertex can be tagged as reusable.

We follow the rules below to allocate a block of memory to a vertex v:

• we only allocate a new block when no block is available;

• when multiple blocks are available, we pick the smallest block that is big
enough to contain the value of v, so that as little memory as possible stays
unused. If the available blocks are all smaller that v, we increase the size
of the current biggest block to fit v;

• when possible, we always favour an inplace reuse (i.e. reusing the memory
of a direct predecessor of v) to reduce memory access overhead.

You can find the pseudo-code in Algorithm 1. It is important to realise that
the block allocation depends on γ. It is primordial to use the same order when
initialising and evaluating a graph. It is likely that some other topological order
gives a slightly better allocation for some graphs, but no easy way to generate
such an order appears to be constantly better. The post-order DFS approach
has been chosen for its ease of implementation.

The overall time complexity of the allocation is O(n ∗ log(b)), where n is the
number of nodes in the graph and b is the number of distinct memory blocks at
the end of the algorithm (of course, b ≤ n). The log(b) factor comes from the
FindBestBlock function. Implementing this effectively reduced the memory
consumption of Mask R-CNN from 7 GB to 1 GB for a 1024x1024 picture. A
summary of the changes can be found at https://github.com/owlbarn/owl/

pull/318.

For instance, when evaluated in the right order, the computation graph in
Figure 5, which can be used to recognise hand-written digits, needs only two
different blocks of memory for 18 shareable nodes. You can find more statistics
illustrating what the computation graph with this new algorithm achieves in
Figure 6.

Using a computation graph has many other advantages that were not men-
tioned in this report. To learn more about it, see http://ocaml.xyz/chapter/

cgraph_intro.html. It is important to emphasise that this mechanism can
be used for any scientific computation using multi-dimensional arrays, not only
neural networks.

13

https://github.com/owlbarn/owl/pull/318
https://github.com/owlbarn/owl/pull/318
http://ocaml.xyz/chapter/cgraph_intro.html
http://ocaml.xyz/chapter/cgraph_intro.html


Algorithm 1 Memory Allocation for CPU devices

Variables
refs, associating to each node its number of successors
reusable, used to store the available blocks
block size, associating to each block a size
block, associating to each node a block

end Variables

function FindBestBlock(s)
if there is a block in reusable with size ≥ s then

return smallest block in reusable of size ≥ s
else if reusable is not empty then

b← largest block in block
block size(b)← s
return b

else
b← new block
block size[b]← s
return b

function Initialise(x)

Input: a node x of the computation graph
Effect: allocates a block of memory to x and its ancestors.

if x is not initialised then
for all predecessor p of x do Initialise(p)

for all predecessor p of x that can be overwritten do
ref [p]← ref [p]− 1
if ref [p] = 0 then reusable.add(p)

block[x]← FindBestBlock(size(x))
for all predecessor p of x that cannot be overwritten do

ref [p]← ref [p]− 1
if ref [p] = 0 then reusable.add(p)

14



Figure 5: Computation graph of the inference mode of a neural network for character
recognition (available at https://github.com/owlbarn/owl/blob/master/examples/
lazy_mnist.ml). Each colour corresponds to a memory block, white nodes always
need to be kept in memory.

15

https://github.com/owlbarn/owl/blob/master/examples/lazy_mnist.ml
https://github.com/owlbarn/owl/blob/master/examples/lazy_mnist.ml


Architecture Time w/o Time w/ CG (s) Memory w/o Memory w/

CG (s) Building Evaluating CG (MB) CG (MB)

InceptionV3 0.5649 0.1066 0.2275 625.76 230.10

ResNet50 0.7933 0.1395 0.6090 1309.9 397.07

MNIST (training) 20.422 0.1436 10.920 3685.3 895.32

Mask R-CNN 11.538 0.3630 8.379 6483.4 870.48

Figure 6: InceptionV3 and ResNet50 are tested with a 299x299 image; Mask R-CNN
is tested with a 768x768 image. The MNIST line refers to the training mode of the
network in Figure 5. The time is the average over 30 evaluations, without reusing
precomputed nodes when a computation graph is used. The graph building phase
includes graph construction, optimisation and memory initialisation. The memory is
the maximum resident set size of the program. This was evaluated on a laptop with
an Intel i5-6300HQ CPU and 8 GB of RAM.

16



4 Minor contributions to Owl

In order to make Mask R-CNN work with a clean code and as efficiently as
possible, I had to perform the following changes in Owl.

Implementation of ResNet9. ResNet is implemented in Owl as a part of
Mask R-CNN, but has also been made available as a standalone repository.

Complexity of top and bottom functions10. The time complexity of the
top (resp. bottom) function in the Ndarray module, used to return the k

greatest (resp. smallest) elements in tensor t, has been lowered from O(n ∗ k)
to O(n ∗ log(k)), where n is the number of elements in t, by implementing and
using a binary heap.

Multi-input/output support in neural network module11. New func-
tions to let a user define neural networks with multiple inputs or outputs. Also,
new neural layer LambdaArray to let users define arbitrary functions taking
multiple tensors as arguments inside their neural networks.

Save and load weights of Normalisation layer12. A bug caused some
parameters of the Normalisation layer of the neural network module not to be
properly saveable and loadable. This has been fixed.

Graph module improvements13. BFS traversal was implemented, as well
as an optional parameter to perform a pre-order or post-order DFS. The function
to generate a topological sort had a complexity bug which was fixed.

Computation graph additions14,15,16.

1. Operator Delay allowing user-defined functions to be wrapped in a node
of the computation graph.

2. Operator LazyPrint to print a node of a computation graph, in a similar
fashion to TensorFlow’s tf.Print() function.

9https://github.com/pvdhove/owl-resnet
10https://github.com/owlbarn/owl/pull/306
11https://github.com/owlbarn/owl/pull/308
12https://github.com/owlbarn/owl/pull/317
13https://github.com/owlbarn/owl/pull/314
14https://github.com/owlbarn/owl/pull/311
15https://github.com/owlbarn/owl/pull/325
16https://github.com/owlbarn/owl/pull/315

17

https://github.com/pvdhove/owl-resnet
https://github.com/owlbarn/owl/pull/306
https://github.com/owlbarn/owl/pull/308
https://github.com/owlbarn/owl/pull/317
https://github.com/owlbarn/owl/pull/314
https://github.com/owlbarn/owl/pull/311
https://github.com/owlbarn/owl/pull/325
https://github.com/owlbarn/owl/pull/315


3. Function to automatically compile a neural network into an optimised
computation graph for the inference mode, with a way to perform inference
by batch.

18



References

[Abd17] Waleed Abdulla. Mask R-CNN for object detection and instance
segmentation on Keras and TensorFlow. https://github.com/

matterport/Mask_RCNN, 2017.

[APW12] Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability of
treewidth, one-shot pebbling, and related layout problems. In
Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, ed-
itors, Approximation, Randomization, and Combinatorial Optimiz-
ation. Algorithms and Techniques, pages 13–24, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie
Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
MXNet: A flexible and efficient machine learning library for hetero-
geneous distributed systems. CoRR, abs/1512.01274, 2015.

[CXZG16] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Train-
ing deep nets with sublinear memory cost. CoRR, abs/1604.06174,
2016.

[GLT79] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The
pebbling problem is complete in polynomial space. In Proceedings
of the Eleventh Annual ACM Symposium on Theory of Computing,
STOC ’79, pages 237–248, New York, NY, USA, 1979. ACM.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick.
Mask R-CNN. 2017 IEEE International Conference on Computer
Vision (ICCV), pages 2980–2988, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[LDG+17] Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He, Bharath
Hariharan, and Serge J Belongie. Feature pyramid networks for
object detection. In CVPR, volume 1, page 4, 2017.

[LINK18] Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya.
TFLMS: Large model support in TensorFlow by graph rewriting,
2018.

19

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN


[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015.

[Nor13] Jakob Nordstrom. Pebble games, proof complexity, and time-space
trade-offs. arXiv preprint arXiv:1307.3913, 2013.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal net-
works. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[Sav97] John E. Savage. Models of Computation: Exploring the Power of
Computing. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1997.

[Set73] Ravi Sethi. Complete register allocation problems. In Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, STOC
’73, pages 182–195, New York, NY, USA, 1973. ACM.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. In Computer
Vision and Pattern Recognition (CVPR), 2015.

[Wan17] Liang Wang. Owl: A general-purpose numerical library in OCaml.
CoRR, abs/1707.09616, 2017.

20


	Introduction
	Computer Vision with Owl
	Motivation
	The Mask R-CNN network
	Feature extractor
	Proposal generation
	Classification

	State of the implementation

	Computation graph optimisation 
	Motivation
	Memory allocation problem
	Allocation algorithm

	Minor contributions to Owl

