UMONS

Université de Mons

: 1. Outline

* Goal: develop techniques to automatically assess the reliability of complex
systems.

* Problem at hand: quantify the likelihood that some events happen in stochas-
tic and timed environments.

e Plan: follow a successful approach to understand this problem for count-
able Markov chains [ABMOY] and for general stochastic transition systems

|[BBBC18] and use it in the setting of stochastic hybrid systems.
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: 2. Markov chains

~

A Markov chain is a tuple M = (5, —, P) where

e S isa countable set of states,
e - C S x Sisa transition relation,

e P:5x5—10,1] such that forall s € S, P(
the transitions from s.

5,-) is a probability distribution on

A Markov chain can be used to describe sequences of states in which the proba-

bility of each state depends solely on the previous state.
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3. Markov chain running example

~

1
2

1
2

We model a situation in which a man starts in state A and then goes either to B

or Bar with probability 5 (P(A,B) = P(A,Bar) = 5). Once he is at the Bar, he never
leaves it. He wants to know how likely he is to go back Home.

- /

/'4.Runs

~

e A run of M = (5,—,P) is an infinite se-
quence sgs152... of states such that for all 1 > 0,
P(s;,s;.1) > 0. The set of runs of M is denoted
Runs(/V4).

* Given sy € S an initial state, we can define a prob-
ability ProbM on the runs of M.

e Given a set of runs, we would like to quantity the
probability that a run from this set happens.
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* In our example, the probability of the set of runs
starting with A — B — Home... is easy to compute:

Probs”! (A — B — Home...) = P(A,B) - P(B, Home)
= 5=

H> | =
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' 5. Quantitative reachability problem

Let M = (5,—,P) a Markov chain and F C S a set of states.

The set of runs eventually reaching a state in F is denoted OF.

A standard problem is to Compute the probability of ever reaching any state
in F from state sg (i.e. Prob’ (<>F )). Since runs are infinite and the number of
states can be infinite, we Would be satisfied if we could calculate a close-enough
approximation of this value.

APPROXIMATE QUANTITATIVE REACHABILITY

Inputs
e A Markov chain M =

e An initial state s,
e A setofstates F C S,

e A rational € > 0.
Output A rational 6 such that 8 < Probgg/l (OF) <0 +e.

(S,—,P),

In our previous example, let us assume that our goal is to reach Home (F = {Home} ).
We notice that there is a positive probability to reach Home from A and B but not
from Bar. How could we approximate the probability of reaching Home?
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Reachability in Infinite Markov Chains

" 6. Approximation scheme [IN97]

For F C S, the avoid-set F = {s € S | Prob(OF) = 0} is the set of states from
which F is non-reachable.

For any n > 0, we can compute the probability of reaching F and F from an
initial state s in less than 7 steps:

< P}fz/es = Prob ! (O<n F), N
' =Prob(=F Uy F).

To do so, we unfold the Markov chain from the initial state. We notice that every
time we reach a state in F or F, we can stop the unfolding. In our example, if
F = {Home} and F = {Bar},

___________________________________________

Step 0 o~ pges 0, pé\lo =0,
st (51)  (omd) ples =g, pNo =],
sz (o) (a1) e
__________________________________________ Yes _

Step 3

___________________________________________

e Foralln >0, p.* < ProbM(OF) <1-—pho.

e Moreover, (p )

)» and (p)'?),, are both non-decreasing sequences.
—Pfy ) — pnes < ¢ for a fixed € > 0.

This algorithm works well on this example but unfortunately, it does not always
terminate.

e We stop the algorithm when (1

)

7. Counterexample

e Infinite number of states (random walk on the positive

integers).
o Westartins,, F = {sy} = F = @. Therefore, for n > 0,
No _
Pn =
e We can compute via other means that Prob(OF) = %, so

forn >0, pyes<§

:>(_pn)

— 10 <e< 3, the algorithm does not terminate.

pnszlforanyn

~
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: 8. When does it terminate? ~~ Decisiveness

Definition ([ABMO7]). A Markov chain M is decisive w.r.t. F C S if for any initial
states € S, N
ProbM (OF v OF) = 1.

Theorem ([ABMO7]). If M is decisive w.r.t. F, then the approximation scheme to com-
pute Prob™ (OF) is correct and terminates.

Many classes of stochastic systems turn out to be decisive:

¢ finite Markov chains,
 Markov chains with a finite attractor and globally coarse ones [ABMO07],
e reactive/single-clock stochastic timed automata [Car17].
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" 9. Our goal...

..1s to prove that stochastic o-minimal hybrid systems verify some decisiveness
assumption.

This model consists of

e finitely many discrete states,
2<y<4 e finitely many continuous variables,
e cuards and resets on each edge,

e continuous distributions on time delays,

e discrete distributions on edges.

x>10Ay >15
x:=0y:=1

The set of states is thus uncountable (S x R"”, where n is the number of con-
tinuous variables). Stochastic o-minimal hybrid systems have two interesting
properties making decisiveness possible:

e every variable has to be reset at each edge (strong reset);
* existence of a finite time-abstract bisimulation.




