
Reachability in Infinite Markov Chains

1. Outline
• Goal: develop techniques to automatically assess the reliability of complex

systems.
• Problem at hand: quantify the likelihood that some events happen in stochas-

tic and timed environments.
• Plan: follow a successful approach to understand this problem for count-

able Markov chains [ABM07] and for general stochastic transition systems
[BBBC18] and use it in the setting of stochastic hybrid systems.

2. Markov chains
A Markov chain is a tupleM = (S,→, P) where

• S is a countable set of states,
• →⊆ S× S is a transition relation,
• P : S× S→ [0,1] such that for all s ∈ S, P(s, ·) is a probability distribution on
the transitions from s.

A Markov chain can be used to describe sequences of states in which the proba-
bility of each state depends solely on the previous state.

3. Markov chain running example
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We model a situation in which a man starts in state A and then goes either to B

or Bar with probability 1
2 (P(A,B) = P(A,Bar) = 1

2). Once he is at the Bar, he never
leaves it. He wants to know how likely he is to go back Home.

4. Runs
• A run of M = (S,→, P) is an infinite se-

quence s0s1s2 . . . of states such that for all i ≥ 0,
P(si, si+1) > 0. The set of runs of M is denoted
Runs(M).

• Given s0 ∈ S an initial state, we can define a prob-
ability ProbMs0

on the runs ofM.
• Given a set of runs, we would like to quantify the

probability that a run from this set happens.
• In our example, the probability of the set of runs

starting with A→ B→ Home . . . is easy to compute:

ProbMA (A→ B→ Home . . .) = P(A,B) · P(B,Home)

=
1
2
· 1

2
=

1
4

.
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5. Quantitative reachability problem
LetM = (S,→, P) a Markov chain and F ⊆ S a set of states.
The set of runs eventually reaching a state in F is denoted ♦F.
A standard problem is to compute the probability of ever reaching any state
in F from state s0 (i.e. ProbMs0

(♦F)). Since runs are infinite and the number of
states can be infinite, we would be satisfied if we could calculate a close-enough
approximation of this value.

APPROXIMATE QUANTITATIVE REACHABILITY

Inputs
• A Markov chainM = (S,→, P),
• An initial state s0,
• A set of states F ⊆ S,
• A rational ε > 0.

Output A rational θ such that θ ≤ ProbMs0
(♦F) ≤ θ + ε.

In our previous example, let us assume that our goal is to reach Home (F = {Home}).
We notice that there is a positive probability to reach Home from A and B but not
from Bar. How could we approximate the probability of reaching Home?

6. Approximation scheme [IN97]
For F ⊆ S, the avoid-set F̃ = {s ∈ S | ProbMs (♦F) = 0} is the set of states from
which F is non-reachable.
For any n ≥ 0, we can compute the probability of reaching F and F̃ from an
initial state s in less than n steps:{

pYes
n = ProbMs (♦≤n F),

pNo
n = ProbMs (¬F U≤n F̃).

To do so, we unfold the Markov chain from the initial state. We notice that every
time we reach a state in F or F̃, we can stop the unfolding. In our example, if
F = {Home} and F̃ = {Bar},
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• For all n ≥ 0, pYes
n ≤ ProbMs (♦F) ≤ 1− pNo

n .
• Moreover, (pYes

n )n and (pNo
n )n are both non-decreasing sequences.

• We stop the algorithm when (1− pNo
n )− pYes

n ≤ ε for a fixed ε > 0.
This algorithm works well on this example but unfortunately, it does not always
terminate.

7. Counterexample
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s0 • Infinite number of states (random walk on the positive
integers).

• We start in s1, F = {s0} =⇒ F̃ = ∅. Therefore, for n ≥ 0,
pNo

n = 0.
• We can compute via other means that Prob(♦F) = 2

3, so
for n ≥ 0, pYes

n ≤ 2
3.

=⇒ (1− pNo
n )− pYes

n ≥ 1
3 for any n.

=⇒ if 0 < ε < 1
3, the algorithm does not terminate.

8. When does it terminate?  Decisiveness
Definition ([ABM07]). A Markov chain M is decisive w.r.t. F ⊆ S if for any initial
state s ∈ S,

ProbMs (♦F ∨♦F̃) = 1.
Theorem ([ABM07]). IfM is decisive w.r.t. F, then the approximation scheme to com-
pute ProbM(♦F) is correct and terminates.

Many classes of stochastic systems turn out to be decisive:

• finite Markov chains,
• Markov chains with a finite attractor and globally coarse ones [ABM07],
• reactive/single-clock stochastic timed automata [Car17].

9. Our goal. . .
. . . is to prove that stochastic o-minimal hybrid systems verify some decisiveness
assumption.
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This model consists of
• finitely many discrete states,
• finitely many continuous variables,
• guards and resets on each edge,
• continuous distributions on time delays,
• discrete distributions on edges.

The set of states is thus uncountable (S × Rn, where n is the number of con-
tinuous variables). Stochastic o-minimal hybrid systems have two interesting
properties making decisiveness possible:

• every variable has to be reset at each edge (strong reset);
• existence of a finite time-abstract bisimulation.
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Université de Mons Pierre Vandenhove Service de Mathématiques effectives
Ongoing work with P. Bouyer, T. Brihaye, M. Randour, C. Rivière Département de Mathématiques


