Revelations: A Decidable Class of POMDPs with Omega-Regular Objectives

Marius Belly¹, Nathanaël Fijalkow¹, Hugo Gimbert¹, Florian Horn², Guillermo A. Pérez³, <u>Pierre Vandenhove¹</u>

¹CNRS, LaBRI, Université de Bordeaux, France ²CNRS, IRIF, Université de Paris, France ³University of Antwerp – Flanders Make, Antwerp, Belgium

Outline

- Partially observable Markov decision processes (POMDPs):
 - ▷ stochasticity,
 - ▶ nondeterminism,
 - uncertainty about the actual state.
- Strategy synthesis is **undecidable** in general... Approach in this paper:
 - **Two decidable subclasses** with restrictions about **information loss**.
 - Natural algorithm that applies to this class.

Partially Observable Markov Decision Processes (POMDPs)

A **POMDP** is described by states Q, initial state q_0 , actions Act, **observations** Obs. Running example:

a, b

Revealing Property #1: Weak Revelations

Weak revelations

A POMDP is weakly revealing if for all strategies, almost surely, the current state can be known infinitely often.

- \triangleright POMDP \mathcal{P} is weakly revealing: q_0 is almost surely visited infinitely often, no matter the strategy.
- ► This POMDP is not:

Strategies are functions $(Act \times Obs)^* \rightarrow \mathcal{D}(Act)$.

Classical Objectives: Very Undecidable!

- Function $p: Q \rightarrow \{0, \ldots, d\}$ assigning **priorities** to **states**.
- **Parity objective**: the **maximal** priority seen infinitely often is **even**.
- Common subclasses:
- ▷ **Büchi**: $p: Q \rightarrow \{1, 2\}$: something good (2) occurs infinitely often,
- \triangleright **coBüchi**: $p: Q \rightarrow \{0, 1\}$: something bad (1) occurs finitely often.

There is a (non-trivial) **almost-sure winning strategy** in \mathcal{P} . Can you find it?

Existing decidability results for **almost-sure strategies** [1, 2]

- Almost-sure reachability, safety, and Büchi are EXPTIME-complete.
- Almost-sure coBüchi (and therefore parity) are undecidable.

When a revealing history happens, the finite belief support MDP contains as

much information as the infinite belief MDP:

Results for Weakly Revealing POMDPs

Soundness and completeness for **priorities** $\{0, 1, 2\}$

Almost-sure winning strategy in **POMDP** \mathcal{P}

Almost-sure winning strategy in the **belief support MDP** of \mathcal{P} .

Analysing the belief support MDP is **sound** and **complete** for parity $\{0, 1, 2\}$.

Decidability of weakly revealing POMDPs

Almost-sure parity $\{0, 1, 2\}$ for weakly revealing POMDPs is EXPTIMEcomplete.

Algorithm: solve the **belief support MDP** \rightarrow in EXPTIME. However, almost-sure **parity** $\{1, 2, 3\}$ is still **undecidable**... The belief support MDP is of no help in \mathcal{P} .

Revealing Property #2: Strong Revelations

2. Strong revelations

A POMDP is strongly revealing if for every transition $q \xrightarrow{a} q'$,

Beliefs vs. Belief Supports

POMDPs induce infinite belief MDPs:

 $\{q_2,q_2'\}$

When does the analysis of the belief **support** MDP suffice? In general, neither sound nor complete...

References

[1] Christel Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω -automata. J. ACM, 59(1):1:1–1:52, 2012. [2] Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. What is decidable about partially observable Markov decision processes with ω -regular objectives. Journal of Computer and System Sciences, 82(5):878–911, 2016.

there is a non-zero probability of "**observing** q'".

POMDP \mathcal{P} is **not** strongly revealing: $q_1 \xrightarrow{a} q'_1$ is a possible transition, but nothing can reveal q'_1 with certainty.

Decidability of strongly revealing POMDPs

Almost-sure **parity** for **strongly revealing** POMDPs is EXPTIME-complete.

Summary: Decidability of Revealing POMDPs

- Decidability frontier when we move to games: games with partial observation are still **undecidable** for coBüchi under **strong revelations**!
- **Implementation of the algorithms** at https://github.com/gaperez64/pomdps-reveal.

https://arxiv.org/abs/2412.12063

AAAI 2025 Main Track

