

1. Context

Strategy synthesis for zero-sum turn-based games Design **optimal** controllers for systems interacting with an **antag**onistic environment.

Interest in "simple" controllers

When do **finite-memory** strategies suffice to play optimally? Focus on **infinite** graphs.

Inspiration

Memoryless determinacy in infinite graphs. [CN06]

2. Zero-sum turn-based games on graphs

- Two-player arenas: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\square , for \mathcal{P}_2), edges E.
- Set *C* of **colors**. Edges are colored.
- **Objectives** are sets $W \subseteq C^{\omega}$. **Zero-sum**.
- A strategy for \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

3. Finite memory

Finite-memory strategy \approx memory structure + next-act. function

Definition. Memory structure $(M, m_{init}, \alpha_{upd})$: finite set of states M, *initial state* m_{init} *, update function* α_{upd} *:* $M \times C \rightarrow M$ *.*

Ex.: remember whether *a* or *b* was last played:

Next-action function $\alpha_{nxt}: S_i \times M \to E$.

Memoryless strategies use memory structure \rightarrow \bigcirc C.

Pierre Vandenhove Joint work with Patricia Bouyer and Mickael Randour

Characterizing ω -Regularity Through Finite-Memory **Determinacy of Games on Infinite Graphs**

[BRV22] Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)

7. Main result [BRV22]

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a memory structure \mathcal{M} suffices to play optimally in (oneplayer) infinite arenas for both players, then

- \mathcal{M}_{\sim} is finite, and

 \rightsquigarrow if $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}}),$

Generalizes [CN06], where $\mathcal{M}_{\sim} = \mathcal{M} = -\langle \mathcal{D} C \rangle$.

8. Corollaries

Let $W \subseteq C^{\omega}$ be an objective.

Characterization W is **finite-memory-determined** if and only if W is ω -regular.

One-to-two-player FM lift (inspired by [GZ05])

W is finite-memory-determined in **one-player** infinite arenas \implies W is finite-memory-determined in **two-player** infinite arenas.

Proof. W is finite-memory-determined in **one-player** arenas $\xrightarrow{[BRV22]}$ W is recognized by a det. parity automaton (ω -regular) $\xrightarrow{[Zie98]}$ this DPA (as a memory) suffices in **two-player** arenas

References

[CN06] Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled games. Theor. Comput. Sci., 352(1-3):190–196, 2006. [EM79] Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979. [GZ05] Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory, 16th International Conference, volume 3653 of LNCS, pages 428-442. Springer, 2005.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley, 1994.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. *Theor. Comput. Sci.*, 200(1-2):135–183, 1998.

• W is recognized by a parity automaton $(\mathcal{M}_{\sim} \otimes \mathcal{M}, p)$.

 $p\colon M\times C\to \{0,\ldots,n\}.$

 \implies this DPA (as a memory) suffices in **one-player** arenas.