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Outline

Synthesis problem
Synthesizing controllers for reactive systems with an objective.
Systems and their environment modeled with zero-sum games.

Strategy complexity
Given an objective, what are the smallest optimal controllers?
 What is the smallest automatic structure remembering sufficient
information to make optimal decisions?

Results
Characterization of automatic structures for regular objectives;
computational complexity of finding small structures.

Memory Requirements of Regular Objectives Pierre Vandenhove



Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E ).
• Two players P1 (©) and P2 (�)

generate an infinite word
w = babbc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of a player is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .
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Representations of a strategy

In general, a strategy σ : E ∗ → E has an infinite representation.
For synthesis, we like when it has a finite representation with a
computable size. Usual finite representation:

Memory structure
Memory structure (M,minit, αupd): finite set of states M, initial state minit,
update function αupd : M × C → M.

Ex.: remember whether a or b was last played (not yet a strategy!):

a b

a

b

m1 m2

Given an arena A = (V1,V2,E ): next-action function αnxt : Vi ×M → E .
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Finite memory ≈ no memory in the product

MemoryM in A ≈ no memory in arena AnM.

If C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}:

a bv1 v2

c

c
a, c

b, c

ab

m1

m2

n

M

 a b

(v1,m1) (v2,m1)

(v1,m2) (v2,m2)

a

b

c

c
c

cAnM
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ω-regular objectives

The ω-regular objectives are the ones that can be expressed with ω-regular
expressions, or with deterministic Muller automata.
Examples with C = {a, b}:
• W = b∗ab∗aCω;
• W = (b∗a)ω.

Theorem (Büchi, Landweber, 1969)1

All ω-regular objectives admit finite-memory winning strategies in all
arenas.

1Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
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Well-studied case: Muller conditions

For F ⊆ 2C , objective Muller(F) is the set of words whose set of colors
seen infinitely often is in F .
Examples with C = {a, b}:
• Muller({{a}, {a, b}}) = (b∗a)ω,
• Muller({{a, b}}) = (b∗a)ω ∩ (a∗b)ω.

Memory requirements of Muller conditions

• First upper bound of size O(|C |!) in 1982 (later appearance record);2

• Many works about specific cases;3, 4

• Characterization of precise memory requirements and algorithm to
compute them in 1997 ([DJW97]5).

2Gurevich and Harrington, “Trees, Automata, and Games”, 1982.
3Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
4Klarlund, “Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata”, 1994.
5Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
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Is that it?

We have:
1 that ω-regular objectives can be represented by a deterministic
automaton using a Muller acceptance condition;

2 a complete understanding of the memory requirements of Muller
conditions.

Does this settle the question of the memory requirements
of all ω-regular objectives?

Has been quoted as such,6 but not the case (it is only an upper bound)!

6In Handbook of Model Checking (Bloem, Chatterjee, and Jobstmann, “Graph Games and Reactive Synthesis”, 2018):
“The results of Dziembowski et al. [80] give precise memory requirements for strategies in 2-player games with ω-regular
objectives”.
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Why only an upper bound?

Let C = {a, b}, W = b∗ab∗aCω (≈ seeing a two or more times).
How to use results about Muller conditions?
W is not directly a Muller condition Muller(F) with F ⊆ 2C

 needs an automaton structure.

q1 q2 q3

b b

Ca a

 W = Muller({{q3}}).

Using [DJW97],7 we need 1 memory state. . .
. . . after augmenting the arenas with the automaton,

so upper bound of 3 states of memory.
But 1 memory state suffices for winning strategies!

7Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
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Orthogonal quest: regular objectives

How to go further?
Study the memory requirements of ω-regular objectives with non-trivial
automaton structures.

We consider the “simplest” ones.

Regular objectives

• A regular reachability objective is a set LCω with L ⊆ C∗ regular.
• A regular safety objective is a set Cω \ LCω.

• A player wants to realize a word in L, the other wants to prevent it.
• Expressible as standard deterministic finite automata.
• Special cases of open and closed sets, at the first level of the Borel
hierarchy.
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Question

Memory requirements of regular objectives
Characterize the memory structures that suffice to make optimal
decisions for regular objectives in any arena. Compute minimal ones.
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Comparing words
Let W ⊆ Cω be an objective.

Winning continuations
For x ∈ C∗, x−1W = {w ∈ Cω | xw ∈W }.

For x , y ∈ C∗,
• x ∼W y if x−1W = y−1W (≈ Myhill-Nerode equivalence relation),
• x �W y if x−1W ⊆ y−1W (preorder).

Example: let W be the regular safety objective induced by this DFA.

qinit

qa

qb

qab

a

b

b

a

a

b

ε−1W = W , a−1W = {aω},
b−1W = {bω}, (ab)−1W = ∅.

E.g., a ≺W ε, ab ≺W a,
a and b are incomparable for �W .
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Necessary condition for the memory

Let W ⊆ Cω be an objective.

Lemma
A sufficient memory structureM = (M,minit, αupd) needs to distinguish
incomparable words (for �W ), i.e.,

if x , y ∈ C∗ are incomparable for �W ,
then α∗

upd(minit, x) 6= α∗
upd(minit, y).
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Why is it necessary?

Example of a regular safety objective, with a and b incomparable.

qinit

qa

qb

qab

a

b

b

a

a

b

v2 v1

a

b

a

b

a

b

The memory structure needs to “distinguish” the incomparable a and b.
One structure that suffices:

m1 m2
a

a, bb
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Characterization: safety

Let W be a regular safety objective.

Theorem

A memory structureM implements winning strategies in all arenas
if and only if

M distinguishes incomparable words.

Question
How to find a smallest such memory structure?
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More involved example (1/2)

qinit

qa

qb

qab

a

b

b

a

c, d

a, c, d

b, c, d

qc

qd

qcd

c

d

d

c

a, b

a, b, c

a, b, d

Only (qa, qb) and (qc , qd ) are pairs of incomparable states.

Taking the whole automaton as a memory always works  7 states.
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More involved example (2/2)

Possible to do better? Yes!

qinit

qa

qb

qab

a

b

b

a

c, d

a, c, d

b, c, d

qc

qd

qcd

c

d

d

c

a, b

a, b, c

a, b, d

a, b, c, dΓm1

Γm2

Γm3

m1 m2 m3
b

a, c, d a, b, d
c

a, b, c

d

 Combinatorial reformulation of “structureM distinguishing
incomparable prefixes” into a covering of the states with good properties.
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Computational complexity: safety

Decision problem
MemorySafe
Input: An automaton D inducing the regular safety objective W and k ∈ N.
Question: ∃ a memory structureM with ≤ k states that suffices for W ?

Theorem
MemorySafe is NP-complete.

Thanks to the covering reformulation,
• MemorySafe is in NP;
• NP-hardness with a reduction from HamiltonianCycle.
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Regular reachability
Let W be a regular reachability objective.
Memory structures still need to distinguish incomparable words.
But not sufficient!
W = b∗aa∗bCω (all words are comparable):

a bqabqaqinit
a b

b a a, b

Main idea: seeing a is necessary and makes progress. However, we cannot
just play a to win. Word a is an insufficient progress.

m1 m2
a

b a, b
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Condition necessary for reachability

Let W ⊆ Cω be an objective.

Necessary property
LetM = (M,minit, αupd) be a memory structure.
Memory structureM distinguishes insufficient progress if

for all w1,w2 ∈ C∗, if w1 ≺W w1w2 and w1(w2)ω /∈W ,
then α∗

upd(minit,w1) 6= α∗
upd(minit,w1w2).

Also necessary to implement winning strategies for any objective.
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Characterization: reachability

Let W be a regular reachability objective.

Theorem

Memory structureM implements winning strategies in all arenas
if and only if

M distinguishes incomparable words and
M distinguishes insufficient progress.

Remark
Distinguishing insufficient progress is necessary for all objectives, even for
regular safety ones. . .
. . . but there is no insufficient progress for regular safety objectives!
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Computational complexity: reachability

Decision problem
MemoryReach
Input: An automaton D inducing the regular reachability objective W and
k ∈ N.
Question: ∃ a memory structureM with ≤ k states that suffices for W ?

Theorem
MemoryReach is NP-complete.

Needed to show that “M distinguishes insufficient progress” is in NP, but
the same hardness proof as for MemorySafe.
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Implementation
Algorithms8 that find minimal memory structures for regular objectives.
Simple ideas: binary search on the minimal size, encoding properties as
SAT instances and use of a SAT solver.

D =

M = memReq.smallest_memory_safety(D)

\Gamma_0 = [’1’, ’3’, ’4’, ’6’, ’8’, ’9’]
\Gamma_1 = [’0’, ’2’, ’7’, ’9’]
\Gamma_2 = [’1’, ’3’, ’5’, ’6’, ’8’, ’9’]
\Gamma_3 = [’1’, ’3’, ’4’, ’6’, ’7’, ’9’]
\Gamma_4 = [’1’, ’3’, ’5’, ’6’, ’7’, ’9’]

8https://github.com/pvdhove/regularMemoryRequirements
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Conclusion

Summary

• Characterization of the memory structures for regular objectives.
• NP-completeness of finding small memory structures.
• Implementation using a SAT solver.

Thanks!
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Conclusion

Future work
• Two orthogonal directions:
Muller conditions9, 10 and regular objectives.11

 What about Muller automata, i.e., ω-regular objectives?
Partial results for deterministic Büchi automata.12

• Memory model only observes colors. Observing edges may require
fewer memory states. Understood for safety,13 but not for reachability.

Thanks!
9Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
10Casares, “On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller

Conditions”, 2022.
11Bouyer, Fijalkow, et al., “How to Play Optimally for Regular Objectives?”, 2022.
12Bouyer, Casares, et al., “Half-Positional Objectives Recognized by Deterministic Büchi Automata”, 2022.
13Colcombet, Fijalkow, and Horn, “Playing Safe”, 2014.
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