Memory Requirements of Omega-Regular Objectives: the Regular Case

Patricia Bouyer¹, Nathanaël Fijalkow², Mickael Randour³, **Pierre Vandenhove**^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
²CNRS, LaBRI and Université de Bordeaux, France & University of Warsaw, Poland
³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

March 2, 2023 - MTV Seminar, LaBRI

Outline

Synthesis problem

Synthesizing **controllers** for **reactive systems** with an **objective**. Systems and their environment modeled with **zero-sum games**.

Strategy complexity

Given an objective, what are the **smallest** optimal controllers? ~> What is the *smallest automatic structure* remembering **sufficient information** to make **optimal decisions**?

Results

Characterization of automatic structures for *regular objectives*; **computational complexity** of finding small structures.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 () and \mathcal{P}_2 ()

Strategies

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word

$$w = b$$

Strategies

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word

$$w = ba$$

Strategies

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word

$$w = bab$$

Strategies

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word

$$w = babb$$

Strategies

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word

$$w = babbc \ldots \in C^{\omega}.$$

Strategies

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babbc ... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Representations of a strategy

In general, a strategy $\sigma: E^* \to E$ has an **infinite** representation. For synthesis, we like when it has a **finite** representation with a **computable** size. Usual finite representation:

Memory structure

Memory structure $(M, m_{init}, \alpha_{upd})$: finite set of states M, initial state m_{init} , update function α_{upd} : $M \times C \rightarrow M$.

Ex.: remember whether *a* or *b* was last played (**not yet a strategy!**):

Given an arena $\mathcal{A} = (V_1, V_2, E)$: *next-action function* α_{nxt} : $V_i \times M \to E$.

Finite memory \approx no memory in the product

Memory \mathcal{M} in $\mathcal{A} \approx$ no memory in arena $\mathcal{A} \ltimes \mathcal{M}$.

If $C = \{a, b, c\}$, $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often}\}$:

ω -regular objectives

The ω -regular objectives are the ones that can be expressed with ω -regular expressions, or with deterministic Muller automata.

Examples with $C = \{a, b\}$:

- $W = b^* a b^* a C^\omega$;
- $W = (b^*a)^{\omega}$.

Theorem (Büchi, Landweber, 1969)¹

All ω -regular objectives admit finite-memory winning strategies in all arenas.

¹Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

Well-studied case: Muller conditions

For $\mathcal{F} \subseteq 2^{\mathcal{C}}$, objective Muller(\mathcal{F}) is the set of words whose set of colors seen infinitely often is in \mathcal{F} .

Examples with $C = \{a, b\}$:

- $Muller(\{\{a\}, \{a, b\}\}) = (b^*a)^{\omega}$,
- Muller({{a, b}}) = (b^*a)^{ω} \cap (a^*b)^{ω}.

Memory requirements of Muller conditions

- First upper bound of size O(|C|!) in 1982 (*later appearance record*);²
- Many works about specific cases;^{3,4}
- Characterization of precise memory requirements and algorithm to compute them in 1997 ([DJW97]⁵).

²Gurevich and Harrington, "Trees, Automata, and Games", 1982.

³Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

⁴Klarlund, "Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata", 1994.

⁵Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Is that it?

We have:

- that ω-regular objectives can be represented by a deterministic automaton using a Muller acceptance condition;
- 2 a complete understanding of the **memory requirements of Muller conditions**.

Does this settle the question of the memory requirements of all ω -regular objectives?

Has been quoted as such,⁶ but **not the case** (it is only an upper bound)!

⁶In Handbook of Model Checking (Bloem, Chatterjee, and Jobstmann, "Graph Games and Reactive Synthesis", 2018): "The results of Dziembowski et al. [80] give precise memory requirements for strategies in 2-player games with ω-regular objectives".

Why only an upper bound?

Let $C = \{a, b\}$, $W = b^* a b^* a C^{\omega}$ (\approx seeing a two or more times). How to use results about **Muller conditions**?

W is not directly a Muller condition Muller(\mathcal{F}) with $\mathcal{F} \subseteq 2^C$ \rightsquigarrow needs an **automaton structure**.

 $\rightsquigarrow W = \mathsf{Muller}(\{\{q_3\}\}).$

Using [DJW97],⁷ we need 1 memory state... ... **after** augmenting the arenas with the automaton, so **upper bound of** 3 **states of memory**.

But 1 memory state suffices for winning strategies!

Memory Requirements of Regular Objectives

⁷Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Orthogonal quest: regular objectives

How to go further?

Study the memory requirements of ω -regular objectives with **non-trivial automaton structures**.

We consider the "simplest" ones.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set C^ω \ LC^ω.
- A player wants to realize a word in L, the other wants to prevent it.
- Expressible as standard deterministic finite automata.
- Special cases of open and closed sets, at the first level of the Borel hierarchy.

Question

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives **in any arena**. Compute **minimal** ones.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

Winning continuations

For
$$x \in C^*$$
, $x^{-1}W = \{w \in C^{\omega} \mid xw \in W\}$.

For $x, y \in C^*$,

x ~_W y if x⁻¹W = y⁻¹W (≈ Myhill-Nerode equivalence relation),
x ≺_W y if x⁻¹W ⊂ y⁻¹W (preorder).

Example: let W be the regular **safety** objective induced by this DFA.

$$\varepsilon^{-1}W = W, \ a^{-1}W = \{a^{\omega}\},\b^{-1}W = \{b^{\omega}\}, \ (ab)^{-1}W = \emptyset.$$

E.g., $a \prec_W \varepsilon$, $ab \prec_W a$,
 a and b are incomparable for \preceq_W .

Necessary condition for the memory

Let $W \subseteq C^{\omega}$ be an objective.

Lemma

A sufficient memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ needs to **distinguish** incomparable words (for \leq_W), i.e.,

> if $x, y \in C^*$ are incomparable for \leq_W , then $\alpha^*_{upd}(m_{init}, x) \neq \alpha^*_{upd}(m_{init}, y)$.

Why is it necessary?

Example of a regular **safety** objective, with *a* and *b* incomparable.

The memory structure needs to "distinguish" the incomparable a and b. One structure that suffices:

Characterization: safety

Let W be a **regular safety objective**.

Theorem

A memory structure \mathcal{M} implements winning strategies in all arenas if and only if \mathcal{M} distinguishes incomparable words.

Question

How to find a smallest such memory structure?

More involved example (1/2)

Only (q_a, q_b) and (q_c, q_d) are pairs of incomparable states.

Taking the whole automaton as a memory always works \rightsquigarrow 7 states.

More involved example (2/2)

Possible to do better? Yes!

 \rightsquigarrow Combinatorial reformulation of "structure ${\cal M}$ distinguishing incomparable prefixes" into a **covering of the states** with good properties.

Computational complexity: safety

Decision problem

MEMORYSAFE **Input**: An automaton \mathcal{D} inducing the regular safety objective W and $k \in \mathbb{N}$. **Question**: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Theorem

 $\label{eq:MemorySafe} \mathrm{MemorySafe} \text{ is NP-complete}.$

Thanks to the covering reformulation,

- MemorySafe is in NP;
- NP-hardness with a reduction from HAMILTONIANCYCLE.

Regular reachability

Let W be a regular **reachability** objective.

Memory structures still need to distinguish incomparable words.

But not sufficient!

 $W = b^* a a^* b C^{\omega}$ (all words are comparable):

Main idea: seeing *a* is necessary and *makes progress*. However, we cannot just play *a* to win. Word *a* is an *insufficient progress*.

Condition necessary for reachability

Let $W \subseteq C^{\omega}$ be an objective.

Necessary property

Let $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ be a memory structure. Memory structure \mathcal{M} distinguishes insufficient progress if

for all
$$w_1, w_2 \in C^*$$
, if $w_1 \prec_W w_1 w_2$ and $w_1(w_2)^{\omega} \notin W$,
then $\alpha^*_{\text{upd}}(m_{\text{init}}, w_1) \neq \alpha^*_{\text{upd}}(m_{\text{init}}, w_1 w_2)$.

Also necessary to implement winning strategies for any objective.

Characterization: reachability

Let W be a regular reachability objective.

Theorem

Memory structure ${\mathcal M}$ implements winning strategies in all arenas $$ \ensuremath{\text{ if }} $ and $ only $ \ensuremath{\text{ only if }} $ \ensuremath{\text{ if }} $ \ensuremath{\text{ strategies }} $ \ensuremath{\text{ if }} $ \ensuremath{\text{ strategies }} $ \ensuremath{\text strategies } $ \ensuremath{} $ \$

 ${\cal M}$ distinguishes incomparable words and ${\cal M}$ distinguishes insufficient progress.

Remark

Distinguishing insufficient progress is necessary for all objectives, even for regular **safety** ones...

... but there is *no insufficient progress* for regular safety objectives!

Computational complexity: reachability

Decision problem

MEMORYREACH **Input**: An automaton \mathcal{D} inducing the regular **reachability** objective W and $k \in \mathbb{N}$. **Question**: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Theorem

 $\label{eq:MemoryReach} \operatorname{MemoryReach} \text{ is } \mathsf{NP}\text{-complete}.$

Needed to show that " \mathcal{M} distinguishes insufficient progress" is in NP, but the same hardness proof as for MEMORYSAFE.

Implementation

Algorithms⁸ that find minimal memory structures for regular objectives. **Simple ideas**: binary search on the minimal size, encoding properties as SAT instances and use of a SAT solver.

⁸https://github.com/pvdhove/regularMemoryRequirements

Memory Requirements of Regular Objectives

Conclusion

Summary

- Characterization of the memory structures for regular objectives.
- NP-completeness of finding small memory structures.
- Implementation using a SAT solver.

Conclusion

Future work

Two orthogonal directions: *Muller conditions*^{9,10} and *regular objectives*.¹¹

 \rightsquigarrow What about Muller automata, i.e., ω -regular objectives?

Partial results for deterministic Büchi automata.¹²

 Memory model only observes colors. Observing edges may require fewer memory states. Understood for safety,¹³ but not for reachability.

Thanks!

Memory Requirements of Regular Objectives

⁹Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

 $^{^{10}\}mathsf{Casares},$ "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

¹¹Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

¹²Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2022.

¹³Colcombet, Fijalkow, and Horn, "Playing Safe", 2014.