Revelations: A Decidable Class of POMDPs with Omega-Regular Objectives

Marius Belly¹, Nathanaël Fijalkow¹, Hugo Gimbert¹, Florian Horn², Guillermo A. Pérez³, **Pierre Vandenhove**¹

¹CNRS, LaBRI, Université de Bordeaux
²CNRS, IRIF, Universite de Paris, France
³University of Antwerp – Flanders Make, Antwerp, Belgium

AAAI 2025 - March 1, 2025

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Outline

Partially observable Markov decision processes (POMDPs):

- nondeterminism,
- stochasticity,
- **uncertainty** about the actual state.

Offline approach: complete description of the POMDP as an input.

Goal

Strategy synthesis for ω -regular objectives (e.g., reachability, safety, *Büchi*...). Undecidable in general; **decidable subclasses**?

Means

Two subclasses with probabilistic guarantees about sometimes **knowing the actual state**. **Natural algorithm** that applies to this class.

Partially observable MDPs

States Q, initial state q_0 , actions Act, observations Obs. Strategies are functions $(Act \times Obs)^* \rightarrow \mathcal{D}(Act)$.

Revelations: Decidable POMDPs

Objective

- Common objectives:
 - Reachability: a good state is eventually visited,
 - **Büchi**: $p: Q \rightarrow \{1, 2\}$; good states (2) are visited infinitely often,
 - **coBüchi**: $p: Q \rightarrow \{0, 1\}$; bad states (1) are visited finitely often.
- More generally: function $p: Q \rightarrow \{0, \ldots, d\}$ assigning **priorities** to **states**.
- Parity objective: the maximal priority seen infinitely often is even.
- Question: does there exist an almost-sure strategy?

Decidability in POMDPs^{1,2}

- Almost-sure reachability, safety, and Büchi are EXPTIME-complete.
- Almost-sure **coBüchi** (and therefore **parity**) are **undecidable**.

¹Baier, Größer, and Bertrand, "Probabilistic ω -automata", 2012.

²Chatterjee, Chmelik, and Tracol, "What is decidable about partially observable Markov decision processes with *w*-regular objectives", 2016.

Example of a difficult POMDP

Added priorities 1, 2, 3 to the previous POMDP.

Almost-sure strategy? Yes! Move to q_2/q'_2 when *increasingly high probability* to be in q'_1 .

Revelations: Decidable POMDPs

Belief (support) MDP

Finite: only keep belief supports:

When does the analysis of the belief **support** MDP suffice? In general, neither sound nor complete...

Revelations: Decidable POMDPs

M. Belly, N. Fijalkow, H. Gimbert, F. Horn, G.A. Pérez, P. Vandenhove

Looking for decidable classes...

1. Weak Revelations

by restricting the information loss!

Weak revelations

Weak revelations

A POMDP is **weakly revealing** if for all strategies, almost surely, the **current state can be known** infinitely often.

Not weakly revealing

Weakly revealing: q_0 is visited infinitely often

Weak revelations

Weak revelations

A POMDP is **weakly revealing** if for all strategies, almost surely, the **current state can be known** infinitely often.

When a *revealing history* happens, the finite belief **support** MDP contains **as much information** as the infinite belief MDP.

$$(\{q_0\})$$
 \approx $(q_0 \mapsto 1)$

Weak revelations: results

"Weakly revealing" is a semantic property, but is **decidable**.

Priorities $\{0, 1, 2\}$ (encompassing Büchi and coBüchi)

There exists an almost-sure strategy... in a weakly revealing POMDP $\mathcal{P} \iff$ in the belief support MDP of \mathcal{P} .

Decidability

Almost-sure parity $\{0, 1, 2\}$ for weakly revealing POMDPs is EXPTIME-complete.

Algorithm: solve the **belief support MDP** \rightarrow in EXPTIME.

Why restrict to parity $\{0, 1, 2\}$? Unfortunately...

Full parity remains undecidable

Undecidability

Almost-sure parity $\{1, 2, 3\}$ is undecidable for weakly revealing POMDPs.

Belief support MDP does not help for this **weakly revealing** POMDP with priorities 1, 2, 3.

Looking for more decidable classes...

2. Strong Revelations

by restricting the information loss even more!

Strong revelations

Strong revelations

A POMDP is strongly revealing if for every transition $q \xrightarrow{a} q'$, there is a non-zero probability of revealing q'.

Not strongly revealing: $q_1 \xrightarrow{a} q'_1$ is a possible transition, but nothing can reveal q'_1 with certainty.

Strong revelations: results

Full parity

There exists an almost-sure strategy... in a strongly revealing POMDP $\mathcal{P} \iff$ in the belief support MDP of \mathcal{P} .

Theorem

Almost-sure **parity** for **strongly revealing** POMDPs is EXPTIME-complete.

Algorithm: solve the **belief support MDP** \rightsquigarrow in EXPTIME (again!).

Summary

Decidable subclasses for *parity* POMDPs depending on the **revelation** mechanism.

Decidability frontier when we move to **games**: **games with partial observation** remain **undecidable** for coBüchi under **strong revelations**.

Revelations: Decidable POMDPs

Final comments

Paper link:

- A few works with similar approaches.^{3,4,5}
- Implementation available at https://github.com/gaperez64/pomdps-reveal.
- **Take-home message**: While POMDPs are undecidable in general, they are not hopeless: there exist **natural and expressive decidable subclasses**.
- Future directions:
 - more general decidable classes,
 - more expressive objectives (e.g., quantitative reachability),
 - other algorithms than solving the belief support MDP?

Thanks!

³Berwanger and Mathew, "Infinite games with finite knowledge gaps", 2017.

⁴Vlassis, Littman, and Barber, "On the Computational Complexity of Stochastic Controller Optimization in POMDPs", 2012.

⁵Bellinger et al., "Active Measure Reinforcement Learning for Observation Cost Minimization", 2021; Krale, Simão, and Jansen, "Act-Then-Measure: Reinforcement Learning for Partially Observable Environments with Active Measuring", 2023.