Arena-Independent Finite-Memory Strategies

Pierre Vandenhove^{1,2}

Based on joint work with Patricia Bouyer¹, Stéphane Le Roux¹, Youssouf Oualhadj³, Mickael Randour².

> ¹LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium ³LACL – Université Paris-Est Créteil, France

June 17. 2021 – GT ALGA. Journées annuelles

Outline

Strategy synthesis for two-player turn-based games

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

"Optimal" w.r.t. an objective or a specification.

Goal: interest in "simple" controllers

Finite-memory determinacy: when do finite-memory controllers suffice?

Inspiration

Results by Gimbert and Zielonka^{1,2} about **memoryless** determinacy.

¹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

2 The need for memory

3 Arena-independent finite memory

2 The need for memory

3 Arena-independent finite memory

Arena-Independent Finite-Memory Strategies

Pierre Vandenhove

Two-player turn-based zero-sum games on graphs

- Finite two-player arenas: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\Box , for \mathcal{P}_2), edges E.
- Set *C* of **colors**. Edges are colored.
- "Objectives" given by preference relations ⊑ ⊆ C^ω × C^ω (total preorder). Zero-sum.
- A strategy for \mathcal{P}_i is a (partial) function $\sigma \colon E^* \to E$.

Question

Given a preference relation, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.

E.g., for reachability, **memoryless** strategies suffice to play optimally. Also suffice for safety, Büchi, co-Büchi, parity, mean payoff, energy, average-energy...

Good understanding of memoryless determinacy:

- sufficient conditions to guarantee memoryless optimal strategies for both players.^{3,4}
- sufficient conditions to guarantee memoryless optimal strategies for one player.^{5,6,7}
- characterization of the preference relations admitting optimal memoryless strategies for both players.⁸

³Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

⁴Aminof and Rubin, "First-cycle games", 2017.

⁵Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

⁶Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

 $^{^7 {\}rm Gimbert}$ and Kelmendi, "Two-Player Perfect-Information Shift-Invariant Submixing Stochastic Games Are Half-Positional", 2014.

⁸Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Gimbert and Zielonka's characterization

Let \sqsubseteq be a preference relation. One of the two main results:

One-to-two-player memoryless lift⁹

lf

• in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal memoryless strategy,

• in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has an optimal memoryless strategy, then both players have an optimal memoryless strategy in all **two-player** arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., parity and mean-payoff games.

⁹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

2 The need for memory

3 Arena-independent finite memory

The need for memory

Memoryless strategies do not always suffice.

• Büchi(A) \land Büchi(B): requires **finite memory**.

- Mean payoff \geq 0 in both dimensions: requires infinite memory.¹⁰
- ~ Combinations of objectives often require memory.

¹⁰Chatterjee, Doyen, et al., "Generalized Mean-payoff and Energy Games", 2010.

An attempt at lifting [GZ05] to FM determinacy

- Lack of a good understanding of finite-memory determinacy.
- **Related work**: sufficient properties to preserve FM determinacy in Boolean combinations of objectives.¹¹
- Our approach:

Hope: extend Gimbert and Zielonka's results

One-to-two-player lift for memoryless finite-memory determinacy?

¹¹Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

Counterexample to our hope

Let $C \subseteq \mathbb{Z}$. \mathcal{P}_1 wants to achieve a play $\pi = c_1 c_2 \ldots \in C^{\omega}$ s.t.

$$\limsup_{n} \sum_{i=1}^{n} c_i = +\infty \quad \text{or} \quad \exists^{\infty} n, \sum_{i=1}^{n} c_i = 0.$$

Optimal FM strategies in one-player arenas...

... not in two-player arenas: here, \mathcal{P}_1 wins but needs infinite memory.

2 The need for memory

3 Arena-independent finite memory

Distinction between the examples

• For $\text{Büchi}(A) \land \text{Büchi}(B)$, this structure suffices for all arenas for \mathcal{P}_1 .

• The counterexample fails because in one-player arenas, the size of the memory is **dependent on the size of the arena**.

In this arena, \mathcal{P}_1 needs *n* memory states to win.

Observation: for many objectives, one **fixed memory structure** suffices **for all arenas**.

"For all \mathcal{A} , does there exist \mathcal{M} ...?" \rightarrow "Does there exist \mathcal{M} , for all \mathcal{A} ...?"

Method: reproducing the approach of Gimbert and Zielonka given an "arena-independent" memory structure \mathcal{M} .

Characterization of arena-independent determinacy

Let \sqsubseteq be a preference relation and $\mathcal{M}_1, \ \mathcal{M}_2$ be memory structures.

One-to-two-player arena-independent lift¹²

lf

- in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal strategy with memory \mathcal{M}_1 ,
- in all one-player arenas of P₂, P₂ has an optimal strategy with memory M₂,

then both players have an optimal strategy in all two-player arenas with memory $\mathcal{M}_1 \times \mathcal{M}_2$.

In short: the study of **one-player arenas** is sufficient to determine whether playing with **arena-independent finite memory** suffices.

¹²Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

Applicability and limits

Applies to objectives with optimal arena-independent strategies:

- generalized reachability, ¹³
- generalized parity, ¹⁴
- window parity,¹⁵
- Iower- and upper-bounded (multi-dimensional) energy games.^{16,17}
- **Does not apply to**, e.g., multi-dimension lower-bounded energy objectives:¹⁸ the size of the finite memory depends on the arena.

 $^{^{13}\}mathrm{Fijalkow}$ and Horn, "The surprizing complexity of reachability games", 2010.

¹⁴Chatterjee, Henzinger, and Piterman, "Generalized Parity Games", 2007.

¹⁵Bruyère, Hautem, and Randour, "Window parity games: an alternative approach toward parity games with time bounds", 2016.

¹⁶Bouyer, Markey, et al., "Average-energy games", 2018.

¹⁷Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

¹⁸Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

Results about stochastic games

Let \sqsubseteq be a preference relation and $\mathcal{M}_1,$ \mathcal{M}_2 be memory structures.

One-to-two-player stochastic lift¹⁹

lf

- in all one-player stochastic arenas (i.e., MDPs) of P₁, P₁ has a pure optimal strategy with memory M₁,
- in all one-player stochastic arenas (i.e., MDPs) of P₂, P₂ has a pure optimal strategy with memory M₂,

then both players have a **pure** optimal strategy in all **two-player stochastic** arenas with memory $M_1 \times M_2$.

¹⁹Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

Summary

Key observation: arena-independent memory often suffices.

Contributions

- One-to-two-player lift in deterministic and stochastic games.
- Characterization of arena-independent finite-memory determinacy.

Ongoing work

- Understand the arena-**dependent** case.
- Similar one-to-two-player lift for infinite arenas.

Thanks! Questions?