Characterizing Omega-Regularity through Strategy Complexity of Zero-Sum Games

Pierre Vandenhove

LaBRI, Université de Bordeaux

December 20, 2023 - BMS Young Scholar Day

Université [®]BORDEAUX

LABORATOIRE BORDELAIS DE RECHERCHE EN INFORMATIQUE

Overview

Goal

We want to understand **languages of (in)finite words**. ~ Connections to **logic** and **automata**.

Motivation

Representations for languages of infinite words are not well understood.

Result

Given a language, establish a connection between **automata** on infinite words and a **game-theoretic property**.

Plan:

I. Automata, II. Games, III. Connection between automata and games

I. Automata

Automata on infinite words

We want to study languages of infinite words ~> suitable kind of automata?

Deterministic parity automaton

A deterministic parity automaton is a tuple $\mathcal{P} = (Q, \Sigma, q_{init}, \delta, p)$ where

- Q is a finite set of states,
- Σ is an alphabet,
- $q_{ ext{init}} \in Q$ is an initial state,
- $\delta \colon Q \times \Sigma \to Q$ is a transition function,
- $p: Q \times \Sigma \to \{0, \dots, n\}$ associates an **integer** to transitions.

Acceptance condition

An infinite word is accepted if the largest integer seen infinitely often is even.

Example, $\Sigma = \{a, b\}$:

• . . .

- Word $aabaabaab... = (aab)^{\omega} \rightsquigarrow 112212212... = 112(212)^{\omega}$.
- Word $abaaa... = aba^{\omega} \rightsquigarrow 12211... = 1221^{\omega}$. X

 $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty | y \text{ often and } b \text{ is seen } \infty | y \text{ often along } w \}$

Historical side note #1

Infinite words are structures of the form $\langle \mathbb{N}, 0, \text{succ}, \langle (P_a)_{a \in \Sigma} \rangle$.

Connecting automata and logic [Büchi, 1962] [Emerson, Jutla, 1991]

A language $L \subseteq \Sigma^{\omega}$ is recognized by a **deterministic parity automaton** if and only if it is definable in *monadic* second-order logic.

Corollary

This monadic second-order theory is decidable.

Automata representation

ω -regularity

These languages of infinite words are called ω -regular.

Multiple mysteries remain about automata for ω -regular languages.

Open questions

- Characterizing the smallest deterministic automata for a language?
- How to minimize an automaton (complexity)?

However, languages of **finite** words are well-understood.

Case of finite words 🙂

Let $K \subseteq \Sigma^*$ be a language of **finite** words.

Myhill-Nerode congruence

For $x, y \in \Sigma^*$, $x \sim_K y$ if for all $z \in \Sigma^*$, $xz \in K \iff yz \in K$.

I.e., x and y have the same accepting continuations in K.

Myhill-Nerode theorem [Nerode, 1958]

- K is regular iff \sim_K has finitely many equivalence classes.
- The equivalence classes of ~_K are the states of the minimal deterministic automaton for K.

Example: K = "a at least twice"

Case of infinite words 😒

Let $L \subseteq \Sigma^{\omega}$ be a language of **infinite** words.

(Almost) Myhill-Nerode congruence

For $x, y \in \Sigma^*$, $x \sim_L y$ if for all $z \in \Sigma^{\omega}$, $xz \in L \iff yz \in L$.

No Myhill-Nerode theorem 😒

- If L is ω -regular, then \sim_L has finitely many equivalence classes.
- The converse is false!

L = "*a* and *b* ∞ ly often" A **single** equivalence class!

Still a "**prefix classifier**" automaton, but not informative enough to recognize the language...

II. Games

Zero-sum turn-based games on graphs

- Alphabet Σ , arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box).

- **Objective** of \mathcal{P}_1 is a language $L \subseteq \Sigma^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\Sigma^{\omega} \setminus L$.

Zero-sum turn-based games on graphs

- Alphabet Σ , arena $\mathcal{A} = (V_1, V_2, E)$.
- Two **players** \mathcal{P}_1 (○) and \mathcal{P}_2 (□). Infinite interaction
 - \rightsquigarrow infinite word w = b
- **Objective** of \mathcal{P}_1 is a language $L \subseteq \Sigma^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\Sigma^{\omega} \setminus L$.

Zero-sum turn-based games on graphs

- Alphabet Σ , arena $\mathcal{A} = (V_1, V_2, E)$.
- Two **players** \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction
 - \rightsquigarrow infinite word w = ba
- **Objective** of \mathcal{P}_1 is a language $L \subseteq \Sigma^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\Sigma^{\omega} \setminus L$.

Zero-sum turn-based games on graphs

- Alphabet Σ , arena $\mathcal{A} = (V_1, V_2, E)$.
- Two **players** \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction
 - \rightsquigarrow infinite word w = bab
- **Objective** of \mathcal{P}_1 is a language $L \subseteq \Sigma^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\Sigma^{\omega} \setminus L$.

Zero-sum turn-based games on graphs

- Alphabet Σ , arena $\mathcal{A} = (V_1, V_2, E)$.
- Two **players** \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction
 - \rightsquigarrow infinite word w = babb
- **Objective** of \mathcal{P}_1 is a language $L \subseteq \Sigma^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\Sigma^{\omega} \setminus L$.

Zero-sum turn-based games on graphs

- Alphabet Σ , arena $\mathcal{A} = (V_1, V_2, E)$.
- Two **players** \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction
 - \rightsquigarrow infinite word $w = babbc \ldots \in \Sigma^{\omega}$.
- **Objective** of \mathcal{P}_1 is a language $L \subseteq \Sigma^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\Sigma^{\omega} \setminus L$.

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \mathcal{P}_1 has a winning strategy from every vertex.

Strategy representation

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \mathcal{P}_1 has a winning strategy from every vertex.

Strategy representation

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \mathcal{P}_1 has a winning strategy from every vertex.

Strategy representation

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \mathcal{P}_1 has a winning strategy from every vertex.

Strategy representation

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \mathcal{P}_1 has a winning strategy from every vertex.

Strategy representation

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \mathcal{P}_1 has a winning strategy from every vertex.

Strategy representation

 $\Sigma = \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \},\$

 $L = \{ w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$

 $\Sigma = \{a, b, c\},$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$

 $\Sigma = \{a, b, c\},\$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often}\}$

 $\Sigma = \{a, b, c\},\$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$

 $\Sigma = \{a, b, c\},\$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often}\}$

 $\Sigma = \{a, b, c\},\$ $L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$

$$\Sigma = \{a, b, c\},$$

$$L = \{w \in \Sigma^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$$

More generally, this memory structure suffices in all games with objective L!

 \rightsquigarrow We say that *L* is **finite-memory determined**.

Finite-memory determinacy

Finite-memory determinacy

A language is finite-memory determined if there exists a finite memory structure \mathcal{M} such that in all games, one of the players has a winning strategy that uses memory \mathcal{M} .

Theorem [Gurevich, Harrington, 1982]

All *w*-regular languages are finite-memory determined.

Historical side note #2 [Rabin, 1969]

Used to show that the MSO theory of the complete binary tree is decidable.

III. Connection between automata and games

Two examples

Defined two objects: prefix classifiers and memory structures. Let $\Sigma = \{a, b\}$.

From memory to automaton

Let $L \subseteq \Sigma^{\omega}$.

Theorem [Bouyer, Randour, V., 2023]

If L is **finite-memory determined** with memory structure \mathcal{M} ,

then *L* is recognized by a *parity automaton* ($S_L \otimes M, p$).

In particular,

L is **finite-memory determined** over all arenas \longleftrightarrow *L* is ω -regular.

Conclusion

Summary

- **Strategic characterization** of ω -regular languages.
- "Myhill-Nerode-like" theorem for languages of infinite words.

Remaining questions

- Characterize minimal memory structures for ω-regular objectives?
- Use this characterization to better understand and **minimize** deterministic parity automata?

Thanks!