# Characterizing Omega-Regularity through Strategy Complexity of Zero-Sum Games 

Pierre Vandenhove

LaBRI, Université de Bordeaux

December 20, 2023 - BMS Young Scholar Day

## université ${ }^{\text {®E BORDEAUX }}$

## Overview

## Goal

We want to understand languages of (in)finite words.
$\rightsquigarrow$ Connections to logic and automata.

## Motivation

Representations for languages of infinite words are not well understood.

## Result

Given a language, establish a connection between automata on infinite words and a game-theoretic property.

## Plan:

I. Automata, II. Games, III. Connection between automata and games

## I. Automata

## Automata on infinite words

We want to study languages of infinite words $\rightsquigarrow$ suitable kind of automata?

## Deterministic parity automaton

A deterministic parity automaton is a tuple $\mathcal{P}=\left(Q, \Sigma, q_{\text {init }}, \delta, p\right)$ where

- $Q$ is a finite set of states,
- $\Sigma$ is an alphabet,
- $q_{\text {init }} \in Q$ is an initial state,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function,
- $p: Q \times \Sigma \rightarrow\{0, \ldots, n\}$ associates an integer to transitions.



## Acceptance condition

An infinite word is accepted if the largest integer seen infinitely often is even.

Example, $\Sigma=\{a, b\}$ :


- Word aabaabaab $\ldots=(a a b)^{\omega} \rightsquigarrow 112212212 \ldots=112(212)^{\omega}$.
- Word abaaa... = aba ${ }^{\omega} \rightsquigarrow 12211 \ldots=1221^{\omega}$. x
- ...
$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty l y$ often and $b$ is seen $\infty$ ly often along $\left.w\right\}$


## Historical side note \#1

Infinite words are structures of the form $\left\langle\mathbb{N}, 0\right.$, succ,,$\left.<,\left(P_{a}\right)_{a \in \Sigma}\right\rangle$.


## Connecting automata and logic [Büchi, 1962] [Emerson, Jutla, 1991]

A language $L \subseteq \Sigma^{\omega}$ is recognized by a deterministic parity automaton if and only if
it is definable in monadic second-order logic.

## Corollary

This monadic second-order theory is decidable.

## Automata representation

## $\omega$-regularity

These languages of infinite words are called $\omega$-regular.
Multiple mysteries remain about automata for $\omega$-regular languages.

## Open questions

- Characterizing the smallest deterministic automata for a language?
- How to minimize an automaton (complexity)?

However, languages of finite words are well-understood.

## Case of finite words $\odot$

Let $K \subseteq \Sigma^{*}$ be a language of finite words.

## Myhill-Nerode congruence

For $x, y \in \Sigma^{*}, x \sim_{K} y$ if for all $z \in \Sigma^{*}, x z \in K \Longleftrightarrow y z \in K$.
I.e., $x$ and $y$ have the same accepting continuations in $K$.

## Myhill-Nerode theorem [Nerode, 1958]

- $K$ is regular iff $\sim_{K}$ has finitely many equivalence classes.
- The equivalence classes of $\sim_{K}$ are the states of the minimal deterministic automaton for $K$.

> Example:
> $K=$ " $a$ at least twice"


## Case of infinite words $\odot$

Let $L \subseteq \Sigma^{\omega}$ be a language of infinite words.
(Almost) Myhill-Nerode congruence
For $x, y \in \Sigma^{*}, x \sim_{L} y$ if for all $z \in \Sigma^{\omega}, x z \in L \Longleftrightarrow y z \in L$.

## No Myhill-Nerode theorem $\fallingdotseq$

- If $L$ is $\omega$-regular, then $\sim_{L}$ has finitely many equivalence classes.
- The converse is false!

$$
L=" a \text { and } b \infty l y \text { often" }
$$

A single equivalence class!


Still a "prefix classifier" automaton, but not informative enough to recognize the language...

## II. Games

## Games

## Zero-sum turn-based games on graphs



- Alphabet $\Sigma$, arena $\mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$.
- Objective of $\mathcal{P}_{1}$ is a language $L \subseteq \Sigma^{\omega}$.
- Zero-sum: objective of $\mathcal{P}_{2}$ is $\Sigma^{\omega} \backslash L$.

Can $\mathcal{P}_{1}$ obtain a word in $L$, no matter what $\mathcal{P}_{2}$ does?

## Games

## Zero-sum turn-based games on graphs



- Alphabet $\Sigma$, arena $\mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$. Infinite interaction
$\rightsquigarrow$ infinite word $w=b$
- Objective of $\mathcal{P}_{1}$ is a language $L \subseteq \Sigma^{\omega}$.
- Zero-sum: objective of $\mathcal{P}_{2}$ is $\Sigma^{\omega} \backslash L$.

Can $\mathcal{P}_{1}$ obtain a word in $L$, no matter what $\mathcal{P}_{2}$ does?

## Games

## Zero-sum turn-based games on graphs



- Alphabet $\Sigma$, arena $\mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$. Infinite interaction $\rightsquigarrow$ infinite word $w=b a$
- Objective of $\mathcal{P}_{1}$ is a language $L \subseteq \Sigma^{\omega}$.
- Zero-sum: objective of $\mathcal{P}_{2}$ is $\Sigma^{\omega} \backslash L$.

Can $\mathcal{P}_{1}$ obtain a word in $L$, no matter what $\mathcal{P}_{2}$ does?

## Games

## Zero-sum turn-based games on graphs



- Alphabet $\Sigma$, arena $\mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$. Infinite interaction $\rightsquigarrow$ infinite word $w=b a b$
- Objective of $\mathcal{P}_{1}$ is a language $L \subseteq \Sigma^{\omega}$.
- Zero-sum: objective of $\mathcal{P}_{2}$ is $\Sigma^{\omega} \backslash L$.

Can $\mathcal{P}_{1}$ obtain a word in $L$, no matter what $\mathcal{P}_{2}$ does?

## Games

## Zero-sum turn-based games on graphs



- Alphabet $\Sigma$, arena $\mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$. Infinite interaction $\rightsquigarrow$ infinite word $w=b a b b$
- Objective of $\mathcal{P}_{1}$ is a language $L \subseteq \Sigma^{\omega}$.
- Zero-sum: objective of $\mathcal{P}_{2}$ is $\Sigma^{\omega} \backslash L$.

Can $\mathcal{P}_{1}$ obtain a word in $L$, no matter what $\mathcal{P}_{2}$ does?

## Games

## Zero-sum turn-based games on graphs



- Alphabet $\Sigma$, arena $\mathcal{A}=\left(V_{1}, V_{2}, E\right)$.
- Two players $\mathcal{P}_{1}(\bigcirc)$ and $\mathcal{P}_{2}(\square)$. Infinite interaction
$\rightsquigarrow$ infinite word $w=b a b b c \ldots \in \Sigma^{\omega}$.
- Objective of $\mathcal{P}_{1}$ is a language $L \subseteq \Sigma^{\omega}$.
- Zero-sum: objective of $\mathcal{P}_{2}$ is $\Sigma^{\omega} \backslash L$.

Can $\mathcal{P}_{1}$ obtain a word in $L$, no matter what $\mathcal{P}_{2}$ does?

## Example (1/3)

$$
\Sigma=\{a, b, c\}
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty$ ly often and $b$ is seen $\infty$ ly often $\}$

$\mathcal{P}_{1}$ has a winning strategy from every vertex.

## Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation. But here, a finite memory with two memory states suffices!

## Example (1/3)

$$
\Sigma=\{a, b, c\}
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty$ ly often and $b$ is seen $\infty$ ly often $\}$

$\mathcal{P}_{1}$ has a winning strategy from every vertex.

## Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation. But here, a finite memory with two memory states suffices!

## Example (1/3)

$$
\Sigma=\{a, b, c\}
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty$ ly often and $b$ is seen $\infty$ ly often $\}$

$\mathcal{P}_{1}$ has a winning strategy from every vertex.

## Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation. But here, a finite memory with two memory states suffices!

## Example (1/3)

$$
\Sigma=\{a, b, c\}
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty$ ly often and $b$ is seen $\infty$ ly often $\}$

$\mathcal{P}_{1}$ has a winning strategy from every vertex.

## Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation. But here, a finite memory with two memory states suffices!

## Example (1/3)

$$
\Sigma=\{a, b, c\}
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty$ ly often and $b$ is seen $\infty$ ly often $\}$

$\mathcal{P}_{1}$ has a winning strategy from every vertex.

## Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation. But here, a finite memory with two memory states suffices!

## Example (1/3)

$$
\Sigma=\{a, b, c\}
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty$ ly often and $b$ is seen $\infty$ ly often $\}$

$\mathcal{P}_{1}$ has a winning strategy from every vertex.

## Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation. But here, a finite memory with two memory states suffices!

## Example (2/3): two memory states

$$
\Sigma=\{a, b, c\},
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty l y$ often and $b$ is seen $\infty$ ly often $\}$


There is a winning strategy $\sigma: V_{1} \times M \rightarrow E$.

## Example (2/3): two memory states

$$
\Sigma=\{a, b, c\},
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty l y$ often and $b$ is seen $\infty$ ly often $\}$


$$
\sigma\left(v_{1}, m_{1}\right)=\xrightarrow{a} v_{2}
$$



There is a winning strategy $\sigma: V_{1} \times M \rightarrow E$.

## Example (2/3): two memory states

$$
\Sigma=\{a, b, c\},
$$

$L=\left\{w \in \Sigma^{\omega} \mid a\right.$ is seen $\infty l y$ often and $b$ is seen $\infty$ ly often $\}$


$$
\sigma\left(v_{1}, m_{1}\right)=\xrightarrow{a} v_{2}
$$



There is a winning strategy $\sigma: V_{1} \times M \rightarrow E$.

## Example (2/3): two memory states



There is a winning strategy $\sigma: V_{1} \times M \rightarrow E$.

## Example (2/3): two memory states



There is a winning strategy $\sigma: V_{1} \times M \rightarrow E$.

## Example (2/3): two memory states



There is a winning strategy $\sigma: V_{1} \times M \rightarrow E$.

## Example (3/3)

$$
\begin{gathered}
\Sigma=\{a, b, c\}, \\
L=\left\{w \in \Sigma^{\omega} \mid a \text { is seen } \propto \text { ly often and } b \text { is seen } \infty \text { ly often }\right\}
\end{gathered}
$$

More generally, this memory structure suffices in all games with objective L!

$\rightsquigarrow$ We say that $L$ is finite-memory determined.

## Finite-memory determinacy

## Finite-memory determinacy

A language is finite-memory determined if there exists a finite memory structure $\mathcal{M}$ such that in all games, one of the players has a winning strategy that uses memory $\mathcal{M}$.

## Theorem [Gurevich, Harrington, 1982]

All $\omega$-regular languages are finite-memory determined.

## Historical side note \#2 [Rabin, 1969]

Used to show that the MSO theory of the complete binary tree is decidable.

## III. Connection between automata and games

## Two examples

Defined two objects: prefix classifiers and memory structures.
Let $\Sigma=\{a, b\}$.
Language

## From memory to automaton

Let $L \subseteq \Sigma^{\omega}$.
Theorem [Bouyer, Randour, V., 2023]
If $L$ is finite-memory determined with memory structure $\mathcal{M}$, then $L$ is recognized by a parity automaton $\left(\mathcal{S}_{L} \otimes \mathcal{M}, p\right)$.

In particular,
$L$ is finite-memory determined over all arenas
$L$ is $\omega$-regular.

## Conclusion

## Summary

- Strategic characterization of $\omega$-regular languages.
- "Myhill-Nerode-like" theorem for languages of infinite words.


## Remaining questions

- Characterize minimal memory structures for $\omega$-regular objectives?
- Use this characterization to better understand and minimize deterministic parity automata?


## Thanks!

