Strategy Complexity: How Much Does It Take to Win?

Pierre Vandenhove

UMONS – Université de Mons, Belgium

August 26, 2025 – Brussels Summer School of Mathematics

Overview

- Main topic: Game theory.
- Game theory is the study of mathematical models representing the interaction between multiple agents (called players), each pursuing an objective.
- Applications: economics, biology, social sciences, politics, computer science...
- Here, we will focus on what strategies look like; how to win? What do the strategies look like?
- **Disclaimer**: game theory is a vast field, with a plethora of models. I focus here on a particular model (*two-player turn-based games on graphs*) which is **well-studied** and still an **active research area**.

Table of contents

- 1 Finite-horizon games
- 2 Aside: how are games relevant for computer science?
- 3 Games on graphs: reachability games
- 4 More complex objectives call for more complex strategies
- 5 The canonical ω -regular objectives
 - Finite automata
 - Büchi automata

 - Parity automata

Table of contents

- 1 Finite-horizon games

- - Finite automata
 - Büchi automata

 - Parity automata

Nim game

We start with a simple special case of what we then consider: the Nim game.

- There are n > 1 matchsticks.
- Two players take turns removing 1, 2, or 3 matchsticks.
- The player who takes the **last** matchstick **loses**.

How to represent this game as a graph and solve it (i.e., find which player can enforce a win)?

→ Blackboard.

Why is the Nim game a simple game?

Two useful properties of the Nim game.

- **I** "Finite horizon": the interaction necessarily has a bounded length:
 - guaranteed to end in a "terminal state" within a bounded number of moves;
 - we can represent all possible plays as a finite tree;
 - lends itself well to a backward induction.
- 2 The objective is very **simple**: to reach a certain state.

We will discuss why it is useful to **relax these two properties** for expressiveness.

Other properties that we will **not** relax in this talk

- There are two players.
- The games are **zero-sum**: when one player wins, the other loses.
- The games are turn-based: only one player plays at a time.
- The games are perfect-information: players always know exactly what moves are played.
- The games are **deterministic**: no random transitions.

How to describe the strategies for the Nim game?

- Let *V* be the set of all possible **game states**.
 - ▶ Here, each state is described as the number of matchsticks remaining and the current player.
- Let $V_1 \subseteq V$ be the set of all states where Player 1 is to move.
- Let $V_2 \subseteq V$ be the set of all **states where Player 2 is to move**.
- Let $E \subseteq V \times V$ be the set of all possible **moves**.

What mathematical object is a **strategy** here?

First definition of a strategy

A strategy for Player ℓ ($\ell \in \{1,2\}$) is a function that observes the current state of Player ℓ and decides what edge of the graph to follow; formally, it is a function

$$\sigma_{\ell} \colon V_{\ell} \to V$$

such that for all $v \in V_{\ell}$, $(v, \sigma_{\ell}(v)) \in E$.

Winning strategies

A **play** is a path $\rho = v_0 \to v_1 \to \cdots \to v_k$ in the game graph such that v_k is a terminal state (i.e., a state with no outgoing edges).

Play induced by a pair of strategies

Given an initial state v_0 , σ_1 is a strategy of Player 1, and σ_2 is a strategy of Player 2, we can define a unique play $\rho_{v_0}^{\sigma_1,\sigma_2}$ as follows:

- The play starts at v_0 .
- If $v_i \in V_1$, the next state v_{i+1} is $\sigma_1(v_i)$; if $v_i \in V_2$, the next state v_{i+1} is $\sigma_2(v_i)$.

A strategy σ_1 of Player 1 is winning from a state v_0 if, when sticking to this strategy, no matter what Player 2 plays, Player 1 wins.

Formally: if for all strategies σ_2 of Player 2, the play $\rho_{\nu_0}^{\sigma_1,\sigma_2}$ is winning for Player 1.

Which player has a winning strategy?

Let us rephrase the existence of a winning strategy from a state v_0 :

- For Player 1: $\exists \sigma_1 \in \Sigma_1$, $\forall \sigma_2 \in \Sigma_2$, $\rho_{\nu_0}^{\sigma_1, \sigma_2}$ is winning for Player 1.
- For Player 2: $\exists \sigma_2 \in \Sigma_2$, $\forall \sigma_1 \in \Sigma_1$, $\rho_{v_0}^{\sigma_1,\sigma_2}$ is winning for Player 2.

These two statements are

- mutually exclusive: if a player has a winning strategy, the other player cannot have one. . .
- but **not negations of each other**: if a player does not have a winning strategy, it is not obvious that the other player has one!

For instance, the negation of the first statement is

$$\forall \sigma_1 \in \Sigma_1, \, \exists \sigma_2 \in \Sigma_2, \, \rho^{\sigma_1,\sigma_2}_{\nu_0} \text{ is winning for Player 2},$$

which is weaker than stating that Player 2 has a winning strategy.

It could be that for all strategies of Player 1, Player 2 has a **counter strategy**, yet Player 2 has no "uniformly" winning strategy.

Determinacy

- A game in which one of the players has a winning strategy is said to be **determined**.
- The above discussion suggests that **not all games may be determined**. Yet...

Zermelo's theorem for win/lose games (1913)

All **finite-horizon**, **two-player**, **zero-sum** games of **perfect information** are **determined**; one of the players has a winning strategy.

Proof: essentially a simple backward induction like we did for the Nim game!

Sometimes regarded as the **first result in game theory**.

Example: Chess

- Chess is a two-player, zero-sum, turn-based game of perfect information.
- The game tree is *huge*, but **finite** (thanks to the *threefold-repetition draw* rule).

Zermelo's theorem for win/lose/draw games

Using Zermelo's theorem (for win/lose/**draw** games), we can conclude that one of the following three statements is true for chess:

- 1 Player 1 has a winning strategy.
- 2 Player 2 has a winning strategy.
- 3 Both players can enforce a draw.

→ Yet, we don't know *which* of these statements is true!

There are an estimated 10^{120} possible chess games.

Applies to **other board games**: Tic-tac-toe, Connect 4, checkers, Go... but **not** poker or Stratego (incomplete information).

What does a non-determined game looks like?

- We will see that exhibiting a **non-determined** *turn-based* game is challenging.
- However, if we relax the turn-based assumption and allow for concurrent moves, we can
 exhibit a non-determined game more easily.
- Example: using our current definitions of strategy and winning strategy, rock-paper-scissors is a non-determined game: for every strategy of Player 1, there exists a counter-strategy for Player 2.
- For concurrent games, the model of strategies we consider is too weak: some **randomness** may be useful to take the opponent by surprise. . . \rightsquigarrow Not for this talk \bigodot

Table of contents

- 2 Aside: how are games relevant for computer science?

- - Finite automata
 - Büchi automata

 - Parity automata

Motivation: reactive systems

- **Reactive systems** = systems that interact continuously with their environment. **Examples**: web server, robot vacuum cleaner "Roomba®", elevator....
- React to uncontrollable events from their environment while achieving an objective.
- Subject to **errors**, sometimes severe (financial losses, deaths).
- Solution 1: tests? Not exhaustive.
- Solution 2: formal verification and synthesis.

Formal verification

- We want a **formal proof** of the correct behavior of a system.
- We work with **models**/abstractions of systems.
- **Specification**: description of the acceptable behaviors of the system.

Synthesizing a controller

- More ambitious: automatically generate a **controller** that guarantees the specification.
- **Incomplete** definition of the system.
- Environment seen as an antagonistic player.

Modeling through **game theory**.

Game-theoretic metaphor for synthesis

- Two-player graph game capturing the states of the system.
- Certain vertices controlled by the system (Player 1), others □ by the environment (Player 2).
- For generality, we assume an interaction of infinite duration between the two players.
 Useful to model, e.g., a web server that handles requests indefinitely, or a Roomba that must vacuum for eternity.
- We define an **objective** such that Player 1 wins iff the system achieves **its specification**.

Table of contents

- 3 Games on graphs: reachability games
- - Finite automata
 - Büchi automata

 - Parity automata

Reachability games

- We now relax the finite-horizon hypothesis: game graphs can have cycles.
- A game graph is a tuple $\mathcal{G} = (V, V_1, V_2, E)$ with $V = V_1 \uplus V_2$ and $E \subseteq V \times V$.
- We assume there is no terminating state: for convenience, all states have an outgoing edge.
- A **play** is now an **infinite path** $v_0 \rightarrow v_1 \rightarrow \cdots$ in the game graph.
- What is the players' objectives? We assume there are **colors** from a set C labeling the states through a function col: $V \to C$.

Reachability objective

A **reachability objective** can be defined with $C = \{\top, \bot\}$:

- the objective of Player 1 is to reach a state labeled with ⊤;
- still **zero-sum**, so the objective of Player 2 is to prevent this from happening (*forever*).

Example (blackboard).

How to solve reachability games? (1/2)

We want an **algorithm** that decides whether Player 1 has a winning strategy from a state v_0 .

Algorithm for reachability games

We compute iteratively all the states from which Player 1 wins:

We start with

$$T_0 = \{ v \in V \mid \operatorname{col}(v) = \top \}.$$

If we start in such a state, Player 1 wins in 0 move!

• Then, we iteratively expand this set:

$$T_{i+1} = T_i \cup \{v \in V_1 \mid \exists u \in T_i, (v, u) \in E\} \cup \{v \in V_2 \mid \forall u, (v, u) \in E \Rightarrow u \in T_i\}.$$

• The sequence $(T_i)_{i\geq 0}$ is non-decreasing: at some point, we reach a **fixed point** $T_k=T_{k+1}$.

How to solve reachability games? (2/2)

Reminder:

$$T_0 = \{ v \in V \mid \operatorname{col}(v) = \top \},$$

$$T_{i+1} = T_i \cup \{ v \in V_1 \mid \exists u \in T_i, (v, u) \in E \} \cup \{ v \in V_2 \mid \forall u, (v, u) \in E \Rightarrow u \in T_i \}.$$

Theorem

For k such that $T_k = T_{k+1}$, Player 1 has a winning strategy from all states in T_k . Player 2 has a winning strategy from all states in $V \setminus T_k$.

Blackboard proof.

The set T_k is an **attractor**: the states from which Player 1 can **attract** Player 2 to a \top -state.

Corollary: complexity of solving reachability games

Computing the winning regions is doable in linear time: $\mathcal{O}(|V| + |E|)$.

Strategies for reachability games

As a by-product, we obtain the **determinacy of reachability games**.

Determinacy of reachability games

In a reachability game, from all states, either Player 1 or Player 2 has a winning strategy.

But the proof also shows what winning strategies look like: for Player ℓ ($\ell \in \{1,2\}$), they are functions

$$\sigma_{\ell} \colon V_{\ell} \to V.$$

Such a strategy is called **memoryless**: it only observes the current state, not the past interaction. Never useful to try another move if revisiting the same state.

Memoryless determinacy of reachability games

In a reachability game, from all states, either Player 1 or Player 2 has a **memoryless** winning strategy.

Curiosity: infinite game graphs, ordinals

- Our algorithm terminates for finite game graphs.
- It may not terminate for **infinite** game graphs.
 - Blackboard example.
- However, it would still work if we could apply it transfinitely many times!
- For instance, apply the operator infinitely many times. . . and then apply it just one more time.
- This can be used to show that even reachability games on infinite game graphs are memoryless-determined.
- **Exercise**: Find a reachability game that requires ω^2 (or ω^{ω}) iterations to solve.

Table of contents

- 1 Finite-horizon games
- 2 Aside: how are games relevant for computer science
- 3 Games on graphs: reachability games
- 4 More complex objectives call for more complex strategies
- 5 The canonical ω -regular objectives
 - Finite automata
 - Büchi automata
 - Buchi automata
 - Parity automata

Summary up to now

- We have studied **reachability games**, which generalize finite-horizon games.
- They are determined, and even memoryless-determined.
- We will now consider more complex objectives.
- First question: what do we mean by objective in general?

Game objectives

- When both players stick to a strategy, they generate a **play**, which induces an element of C^{ω} .
 - $ightharpoonup C^{\omega} = \{c_0c_1 \dots \mid \forall i \geq 0, c_i \in C\}$ is the set of infinite sequences of colors.
- To specify an objective, it suffices to specify all sequences that Player 1 is happy to obtain.

Definition of objective

An **objective** for Player 1 is a set $\mathcal{O} \subseteq C^{\omega}$ of infinite sequences of colors.

As games are **zero-sum**, the objective of Player 2 is $C^{\omega} \setminus \mathcal{O}$. In this framework, the reachability objective is

$$\mathsf{Reach}(\top) = \{c_0c_1c_2\ldots \in C^\omega \mid \exists i \geq 0, c_i = \top\}.$$

Its complement is the safety objective

$$\mathsf{Safe}(\top) = \{c_0c_1c_2\ldots \in C^\omega \mid \forall i \geq 0, c_i \neq \top\}.$$

Memoryless strategies do not always suffice

- $C = \{a, b, c\}.$
- Objective: see infinitely often a and infinitely often b:

$$\mathcal{O} = \{c_0c_1\ldots\in C^\omega\mid \exists^\infty i\geq 0, c_i=a\land \exists^\infty i\geq 0, c_i=b\}.$$

- In this game, Player 1 wins by playing acbcacbc... but **not in a memoryless way!**
- We need to define a more general kind of strategy...

More general definition of **strategy**

A **history** is a finite path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n \in V^*$ of the game graph.

For $\ell \in \{1,2\}$, we denote by $\mathsf{Hists}_{\ell}(\mathcal{G})$ the histories $v_0v_1\ldots v_n$ such that $v_n \in V_{\ell}$.

General definition of a strategy

A **strategy** of \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{G}) \to V$ such that if $\sigma(v_0 v_1 \dots v_i) = v_{i+1}$, then (v_i, v_{i+1}) is an edge of \mathcal{G} .

Less convenient for implementation purposes:

- there are infinitely many strategies, so you cannot try them all;
- Hists $_{\ell}(\mathcal{G})$ is infinite, so representing the strategy in your computer may be challenging.

Back to the previous example

- Memoryless strategies do not suffice for the previous example.
- $C = \{a, b, c\}$:

$$\mathcal{O} = \{c_1 c_2 \ldots \in C^{\omega} \mid \exists^{\infty} i \geq 1, c_i = a \land \exists^{\infty} i \geq 1, c_i = b\}.$$

- But we would still like something implementable!
- Compromise: use **finite memory**. Here, it suffices to remember if we just saw a or b!

Finite-memory strategy

- We condense information from histories Hists_ℓ(G) into a finite object
 → loss of information, but hopefully sufficient to make decisions!
- A common computational model derives from **automata**.

Definition

Memory structure (M, m_{init} , α_{upd}):

finite set of states M, initial state $m_{\text{init}} \in M$, update function $\alpha_{\text{upd}} \colon M \times C \to M$.

• Example to remember if a or b was seen last:

• To play, we rely on the current state of \mathcal{G} and on the current state of the memory (here, m_1 or m_2).

- This information from this memory structure is **sufficient to win in this graph**.
- Actually, this is more general: in any game graph, if winning is possible, then this structure is sufficient! \(\sim \) We will discuss why.
- We say that objective \mathcal{O} is **finite-memory determined**.

- This information from this memory structure is **sufficient to win in this graph**.
- Actually, this is more general: in any game graph, if winning is possible, then this structure is sufficient! \(\sim \) We will discuss why.
- We say that objective \mathcal{O} is **finite-memory determined**.

- This information from this memory structure is sufficient to win in this graph.
- Actually, this is more general: in any game graph, if winning is possible, then this structure is sufficient! \(\sim \) We will discuss why.
- We say that objective \mathcal{O} is **finite-memory determined**.

- This information from this memory structure is **sufficient to win in this graph**.
- Actually, this is more general: in any game graph, if winning is possible, then this structure is sufficient! \(\sim \) We will discuss why.
- We say that objective \mathcal{O} is **finite-memory determined**.

- This information from this memory structure is sufficient to win in this graph.
- Actually, this is more general: in any game graph, if winning is possible, then this structure is sufficient! \(\sim \) We will discuss why.
- We say that objective \mathcal{O} is **finite-memory determined**.

- This information from this memory structure is sufficient to win in this graph.
- Actually, this is more general: in any game graph, if winning is possible, then this structure is sufficient! \(\sim \) We will discuss why.
- We say that objective \mathcal{O} is **finite-memory determined**.

Product game

Another way to look at memory is through the product game.

Playing with memory $\mathcal M$ in game graph $\mathcal G$ pprox Playing memoryless in the game graph $\mathcal G\ltimes\mathcal M$

Blackboard illustration.

- In the first case, the state space is V and the strategy looks at M as well.
- In the second case, the state space is $V \times M$ and the strategy is memoryless.

Memory corresponds to additional information to "inject" in the game graph to make memoryless strategies sufficient.

Finite memory is not always sufficient

- Unfortunately, sometimes, even finite memory is insufficient.
- Let $C = \{-1, 0, +1\}.$
- Objective: either there are only +1, or the sum of colors eventually stabilizes to 0:

$$\mathcal{O}=\{(+1)^\omega\}\cup\{c_0c_1\ldots\in C^\omega\mid \lim_{n o\infty}\sum_{i=0}^nc_i \text{ exists and is }0\}.$$

Blackboard game graph.

• This objective requires **infinite memory** in some game graphs! There is a winning strategy, but no (finite) memory structure suffices, as counting "to infinity" must be possible.

Strategy complexity

Hierarchy of strategies:

Memoryless
$$(V_{\ell} \to V) \subsetneq$$
 Finite memory $(V_{\ell} \times M \to V)$
 \subsetneq General (Hists $_{\ell}(\mathcal{G}) \to V$).

- Research agenda: understand in which contexts simple strategies suffice.
 - Classes of game graphs (finite, infinite, stochastic, etc.).
 - ▶ Classes of objectives ($\mathcal{O} \subseteq C^{\omega}$, maximizing a function $f: C^{\omega} \to \mathbb{R}$, maximizing the probability of an event, etc.).
- Algorithms, complexity of computing the amount of memory needed for a given objective.

Why study strategy complexity?

- Finite bounds on the size of strategies usually leads to the decidability of the synthesis problem.
 - Over finite game graphs, there are then finitely many strategies to consider.
- Trying them all works but is not efficient; strategy complexity gives bounds on the search space, **helping design more efficient algorithms**.
- For implementations, we like having compact controllers.

Aside: Reinforcement learning

- A related area is reinforcement learning, a subfield of machine learning concerned with how agents take actions in environments to achieve some objective.
- Most reinforcement learning algorithms (such as *Q-learning*) assume memoryless strategies suffice: they learn one action to play for each state.
- Crucial to understand strategy complexity to learn decisions for complex objectives!

Gymnasium environments

Table of contents

- 1 Finite-horizon games
- 2 Aside: how are games relevant for computer science?
- 3 Games on graphs: reachability games
- 4 More complex objectives call for more complex strategies
- 5 The canonical ω -regular objectives
 - Finite automata
 - Büchi automata
 - Parity automata

ω -regular objectives

- The ω -regular objectives are very common objectives.
- As we will see, they hold also a special place with respect to strategy complexity.
- Before defining them, we introduce **regular objectives**.

Table of contents

- 1 Finite-horizon games
- 2 Aside: how are games relevant for computer science
- 3 Games on graphs: reachability games
- 4 More complex objectives call for more complex strategies
- 5 The canonical ω -regular objectives
 - Finite automata
 - Büchi automata
 - Parity automata

Regular objectives (1/2)

Finite automata are often used to define sets of **finite** words. They accept the finite words that can be read from the **initial state** to the **final state**.

This automaton

- accepts aab ✓
- rejects aa 🗡

- accepts baab
- . . .

This automaton accepts exactly finite words that see both *a* and *b*.

Exercise

Let
$$C = \{a, b\}$$
.

Build a finite automaton that accepts all finite words containing two a's in a row.

Regular objectives (2/2)

Sets of words that can be defined by such a finite automaton are called regular.

Strategy complexity of regular objectives

Assume the objective of Player 1 is to achieve a word from a regular set L (i.e., $\mathcal{O} = LC^{\omega}$). Then, a deterministic automaton recognizing L always suffices as a memory structure to implement winning strategies.

Proof: If we take the product of the game graph with the automaton, we reduce to a standard reachability objective on the product, which is memoryless-determined!

Blackboard example.

In particular, games with regular objectives are finite-memory determined!

From reachability to regular objectives

From

the memoryless determinacy of reachability objectives,

we have deduced easily

the finite-memory determinacy of regular objectives.

Are there other "canonical" objectives, such as reachability, that we could exploit?

Table of contents

- 1 Finite-horizon games
- 2 Aside: how are games relevant for computer science
- 3 Games on graphs: reachability games
- 4 More complex objectives call for more complex strategies
- 5 The canonical ω -regular objectives
 - Finite automata
 - Büchi automata
 - Parity automata

More complex objectives

Remember the objective

$$\mathcal{O} = \{c_0c_1 \ldots \in C^{\omega} \mid \exists^{\infty}i \geq 0, c_i = a \wedge \exists^{\infty}i \geq 0, c_i = b\}.$$

It is **not** a regular objective 🔀.

Can we still capture it with a more general class of automata? YES!

Deterministic Büchi automata

A deterministic Büchi automaton \mathcal{B} on \mathcal{C}

- reads **infinite** words (in C^{ω}),
- accepts words that see infinitely many Büchi transitions

This automaton

- accepts ababababa... 🗸
- accepts aabaab . . . ✔

- rejects bbbaaaaaa... X

What is the set of words accepted by this automaton?

 $\{w \in \{a, b\}^{\omega} \mid w \text{ sees } \infty \text{ly many } a \text{ and } \infty \text{ly many } b\}$

Exercise

Let
$$C = \{a, b\}$$
.

Build a deterministic Büchi automaton that accepts all infinite words containing **infinitely many** a's, or **two** a's in a row at some point.

Link with strategy complexity

Do you recognize the following automaton?

- It has the same structure as the **memory structure we used to win for this objective**!
- Instead of a reachability acceptance condition, we use a Büchi acceptance condition.
- A Büchi objective requires to see some color infinitely often:

$$\mathsf{B\ddot{u}chi}(\top) = \{c_0c_1 \ldots \in C^{\omega} \mid \exists^{\infty}i \geq 0, c_i = \top\}.$$

It turns out Büchi objectives are also memoryless-determined!

Memoryless determinacy of Büchi objectives

In a game with a Büchi objective, from all states, either Player 1 or Player 2 has a **memoryless** winning strategy.

From Büchi objectives to objectives recognizable by a Büchi automaton

From

the memoryless determinacy of Büchi objectives,

we can deduce

the finite-memory determinacy of objectives recognizable by a deterministic Büchi automaton.

Proof: By taking the product of the game graph with a deterministic Büchi automaton recognizing the objective, we reduce to a standard Büchi objective on the product game, which is memoryless-determined!

The need for determinism

- Observe that our memory structures are deterministic: when reading a color from a given state, there is always exactly one possible transition.
- Some objectives are only recognizable by **non-deterministic** Büchi automata...
- This is a problem to use them as memory structures 😌

Example: the complement of a Büchi objective is a coBüchi objective:

$$\mathsf{coB\ddot{u}chi}(\top) = \{c_0c_1\ldots\in C^\omega\mid \mathsf{there}\ \mathsf{are}\ \mathsf{at}\ \mathsf{most}\ \mathsf{finitely}\ \mathsf{many}\ i'\mathsf{s}\ \mathsf{s.t.}\ c_i = \top\}.$$

Proposition

There is a **non-deterministic** Büchi automaton recognizing coBüchi(\top), but no **deterministic** Büchi automaton.

Blackboard proof.

Non-deterministic Büchi automata

The objectives recognized by non-deterministic Büchi automata are the

ω -regular objectives.

They are **canonical** in that they have multiple equivalent representations:

They are also closed under union, intersection, and complement.

We would like to understand their **determinacy**.

Determinacy of ω -regular objectives

As a first observation, we can use the following **big** theorem:

Theorem (Martin, 1975)

All games with **Borel objectives** are determined.

No definition of Borel objectives here; however...

- to define a non-Borel objective, you need the axiom of choice;
- this implies that non-determined games are necessarily at least a bit strange!
- Borel objectives are \pmb{much} more general than ω -regular objectives!

Corollary

All games with ω -regular objectives are determined.

Can we obtain a stronger kind of determinacy?

What we want

- Büchi automata were introduced by Büchi in the 1960s.¹
- First kind of automata on infinite words.
- The issue here is that they need **non-determinism** to recognize all ω -regular objectives \leadsto not good for memory structures.

We are looking for

- a class of **deterministic** automata that recognize all ω -regular objectives,
- while using a memoryless-determined acceptance condition?

There is exactly such a class!

¹Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

Table of contents

- 1 Finite-horizon games
- 2 Aside: how are games relevant for computer science
- 3 Games on graphs: reachability games
- 4 More complex objectives call for more complex strategies
- 5 The canonical ω -regular objectives
 - Finite automata
 - Büchi automata
 - **Ducin automata**
 - Parity automata

Parity automata

- We still consider deterministic automata reading infinite words, but we change the acceptance condition.
- We assume transitions are labeled by integers in a set $\{0, 1, \dots, d\}$.

An **infinite** word is accepted if the **largest integer seen infinitely often is even.**

Example, $C = \{a, b\}$:

- Word $aabaabaab... = (aab)^{\omega} \rightsquigarrow 112212212... = 112(212)^{\omega}$.
- Word $abaaa... = aba^{\omega} \rightsquigarrow 12211... = 1221^{\omega}$.
- •

$$\mathcal{O} = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often along } w \}$$

Exercise

Let
$$C = \{a, b\}.$$

Build a parity automaton recognizing the set of words that **eventually end with** abababab... (i.e., $C^*(ab)^{\omega}$)?

Parity games

- Let $C = \{0, 1, \dots, d\}$ for some $d \in \mathbb{N}$.
- The **parity objective** is defined as follows: a play is winning for Player 1 if the highest color that appears infinitely often is even.
- Formally,

$$\mathsf{Parity}(C) = \{c_0c_1\ldots\in C^\omega\mid \limsup_{n\to\infty} c_n \text{ is even}\}.$$

Memoryless determinacy of parity games [Emerson, Jutla, 1991]

Games with a parity objective are memoryless-determined.

From parity objectives to ω -regular objectives

From

the memoryless determinacy of parity objectives,

and

the fact that deterministic parity automata recognize all ω -regular objectives,

we can deduce

the finite-memory determinacy of ω -regular objectives.

Proof: By taking the product of the game graph with a deterministic parity automaton recognizing an ω -regular objective, we reduce to a standard parity objective on the product game, which is memoryless-determined!

Conclusion

- The finite-memory determinacy of ω -regular objectives is arguably **the most important** result in the theory of infinite games.
- First shown by Rabin in 1969 for the **decidability of a logical theory** (*S2S*), in a much more complex form.²
- Subsequent articles greatly simplified the proof, with a more direct use of games.³
- Today, this result is still heavily used to solve synthesis problems.⁴
- All competitive synthesis algorithms reduce to a parity game, then solve the parity game.

Strategy Complexity: How Much Does It Take to Win?

²Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

³Gurevich and Harrington, "Trees, Automata, and Games", 1982; Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

⁴ Jacobs et al., "The Reactive Synthesis Competition (SYNTCOMP): 2018-2021", 2024.

Two open problems for the future

Open problem #1

What is the complexity of *solving* parity games?

- They are in NP ∩ coNP.⁵
- Main breakthrough (2017):⁶ they can be solved in **quasi-polynomial time**: $\sim n^{\log d}$.
- Can they be solved in polynomial time?

Open problem #2

How to find the smallest possible *memory structure* for a given ω -regular objective?

- The parity automaton suffices, but not always minimal!
- Recent breakthrough (2025): the related decision problem is in NP.⁷ Not known to be in P.

Thanks

60 / 60

⁵ Follows from their memoryless determinacy: exercise!

⁶Calude et al., "Deciding parity games in quasipolynomial time", 2017.

⁷Casares and Ohlmann, "The Memory of ω-Regular and BC(Σ_0^2) Objectives", 2025. Strategy Complexity: How Much Does It Take to Win?