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Overview

• Main topic: Game theory.
• Game theory is the study of mathematical models representing the interaction between

multiple agents (called players), each pursuing an objective.
• Applications: economics, biology, social sciences, politics, computer science. . .
• Here, we will focus on what strategies look like; how to win? What do the strategies

look like?

• Disclaimer: game theory is a vast field, with a plethora of models. I focus here on a
particular model (two-player turn-based games on graphs) which is well-studied and still
an active research area.
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Nim game
We start with a simple special case of what we then consider: the Nim game.

• There are n ≥ 1 matchsticks.
• Two players take turns removing 1, 2, or 3 matchsticks.
• The player who takes the last matchstick loses.

How to represent this game as a graph and solve it (i.e., find which player can enforce a win)?

⇝ Blackboard.
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Why is the Nim game a simple game?

Two useful properties of the Nim game.
1 “Finite horizon”: the interaction necessarily has a bounded length:

▶ guaranteed to end in a “terminal state” within a bounded number of moves;
▶ we can represent all possible plays as a finite tree;
▶ lends itself well to a backward induction.

2 The objective is very simple: to reach a certain state.
We will discuss why it is useful to relax these two properties for expressiveness.

Other properties that we will not relax in this talk

• There are two players.
• The games are zero-sum: when one player wins, the other loses.
• The games are turn-based: only one player plays at a time.
• The games are perfect-information: players always know exactly what moves are played.
• The games are deterministic: no random transitions.
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How to describe the strategies for the Nim game?

• Let V be the set of all possible game states.
▶ Here, each state is described as the number of matchsticks remaining and the current player.

• Let V1 ⊆ V be the set of all states where Player 1 is to move.
• Let V2 ⊆ V be the set of all states where Player 2 is to move.
• Let E ⊆ V × V be the set of all possible moves.

What mathematical object is a strategy here?

First definition of a strategy
A strategy for Player ℓ (ℓ ∈ {1, 2}) is a function that observes the current state of Player ℓ
and decides what edge of the graph to follow; formally, it is a function

σℓ : Vℓ → V

such that for all v ∈ Vℓ, (v , σℓ(v)) ∈ E .
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Winning strategies

A play is a path ρ = v0 → v1 → · · · → vk in the game graph such that vk is a terminal state
(i.e., a state with no outgoing edges).

Play induced by a pair of strategies
Given an initial state v0, σ1 is a strategy of Player 1, and σ2 is a strategy of Player 2, we
can define a unique play ρσ1,σ2v0 as follows:

• The play starts at v0.
• If vi ∈ V1, the next state vi+1 is σ1(vi); if vi ∈ V2, the next state vi+1 is σ2(vi).

A strategy σ1 of Player 1 is winning from a state v0 if, when sticking to this strategy, no
matter what Player 2 plays, Player 1 wins.
Formally: if for all strategies σ2 of Player 2, the play ρσ1,σ2v0 is winning for Player 1.
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Which player has a winning strategy?
Let us rephrase the existence of a winning strategy from a state v0:

• For Player 1: ∃σ1 ∈ Σ1, ∀σ2 ∈ Σ2, ρσ1,σ2v0 is winning for Player 1.
• For Player 2: ∃σ2 ∈ Σ2, ∀σ1 ∈ Σ1, ρσ1,σ2v0 is winning for Player 2.

These two statements are
• mutually exclusive: if a player has a winning strategy, the other player cannot have one. . .
• but not negations of each other: if a player does not have a winning strategy, it is not

obvious that the other player has one!

For instance, the negation of the first statement is

∀σ1 ∈ Σ1, ∃σ2 ∈ Σ2, ρσ1,σ2
v0 is winning for Player 2,

which is weaker than stating that Player 2 has a winning strategy.

It could be that for all strategies of Player 1, Player 2 has a counter strategy,
yet Player 2 has no “uniformly” winning strategy.

Strategy Complexity: How Much Does It Take to Win? Pierre Vandenhove 9 / 60



Determinacy

• A game in which one of the players has a winning strategy is said to be determined.
• The above discussion suggests that not all games may be determined. Yet. . .

Zermelo’s theorem for win/lose games (1913)
All finite-horizon, two-player, zero-sum games of perfect information are determined; one
of the players has a winning strategy.

Proof: essentially a simple backward induction like we did for the Nim game!

Sometimes regarded as the first result in game theory.
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Example: Chess

• Chess is a two-player, zero-sum, turn-based game of perfect information.
• The game tree is huge, but finite (thanks to the threefold-repetition draw rule).

Zermelo’s theorem for win/lose/draw games
Using Zermelo’s theorem (for win/lose/draw games), we can conclude that one of the following
three statements is true for chess:

1 Player 1 has a winning strategy.
2 Player 2 has a winning strategy.
3 Both players can enforce a draw.

⇝ Yet, we don’t know which of these statements is true!
There are an estimated 10120 possible chess games.
Applies to other board games: Tic-tac-toe, Connect 4, checkers, Go. . .
but not poker or Stratego (incomplete information).
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What does a non-determined game looks like?
• We will see that exhibiting a non-determined turn-based game is challenging.
• However, if we relax the turn-based assumption and allow for concurrent moves, we can

exhibit a non-determined game more easily.
• Example: using our current definitions of strategy and winning strategy,

rock-paper-scissors is a non-determined game: for every strategy of Player 1, there exists a
counter-strategy for Player 2.

• For concurrent games, the model of strategies we consider is too weak: some randomness
may be useful to take the opponent by surprise. . . ⇝ Not for this talk
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Motivation: reactive systems

• Reactive systems = systems that interact continuously with their environment.
Examples: web server, robot vacuum cleaner “Roomba®”, elevator. . . .

• React to uncontrollable events from their environment while achieving an objective.
• Subject to errors, sometimes severe (financial losses, deaths).
• Solution 1: tests? Not exhaustive.
• Solution 2: formal verification and synthesis.

Strategy Complexity: How Much Does It Take to Win? Pierre Vandenhove 14 / 60



Formal verification

• We want a formal proof of the correct behavior of a system.

• We work with models/abstractions of systems.

• Specification: description of the acceptable behaviors of the system.

Formal
model M

System

Model
checker

M |= φ?

Logical
formula φ

Specification

Modeling

Formalization
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Synthesizing a controller
• More ambitious: automatically generate a controller that guarantees the specification.
• Incomplete definition of the system.
• Environment seen as an antagonistic player.

Incomplete
system S

Environment

Specification

Two-player
game

Game
solver

S wins +
winning
strategy

S cannot
guarantee

a win

Modeling through game theory.
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Game-theoretic metaphor for synthesis

• Two-player graph game capturing the states of the system.

• Certain vertices ⃝ controlled by the system (Player 1), others □ by the environment
(Player 2).

• For generality, we assume an interaction of infinite duration between the two players.
Useful to model, e.g., a web server that handles requests indefinitely, or a Roomba that
must vacuum for eternity.

• We define an objective such that Player 1 wins iff the system achieves its specification.
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Reachability games

• We now relax the finite-horizon hypothesis: game graphs can have cycles.
• A game graph is a tuple G = (V , V1, V2, E ) with V = V1 ⊎ V2 and E ⊆ V × V .
• We assume there is no terminating state: for convenience, all states have an outgoing edge.
• A play is now an infinite path v0 → v1 → · · · in the game graph.
• What is the players’ objectives? We assume there are colors from a set C labeling the

states through a function col : V → C .

Reachability objective
A reachability objective can be defined with C = {⊤, ⊥}:

• the objective of Player 1 is to reach a state labeled with ⊤;
• still zero-sum, so the objective of Player 2 is to prevent this from happening (forever).

Example (blackboard).
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How to solve reachability games? (1/2)

We want an algorithm that decides whether Player 1 has a winning strategy from a state v0.

Algorithm for reachability games
We compute iteratively all the states from which Player 1 wins:

• We start with
T0 = {v ∈ V | col(v) = ⊤}.

If we start in such a state, Player 1 wins in 0 move!
• Then, we iteratively expand this set:

Ti+1 = Ti ∪ {v ∈ V1 | ∃u ∈ Ti , (v , u) ∈ E} ∪ {v ∈ V2 | ∀u, (v , u) ∈ E ⇒ u ∈ Ti}.

• The sequence (Ti)i≥0 is non-decreasing: at some point, we reach a fixed point Tk = Tk+1.
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How to solve reachability games? (2/2)

Reminder:

T0 = {v ∈ V | col(v) = ⊤},

Ti+1 = Ti ∪ {v ∈ V1 | ∃u ∈ Ti , (v , u) ∈ E} ∪ {v ∈ V2 | ∀u, (v , u) ∈ E ⇒ u ∈ Ti}.

Theorem
For k such that Tk = Tk+1, Player 1 has a winning strategy from all states in Tk .
Player 2 has a winning strategy from all states in V \ Tk .

Blackboard proof.

The set Tk is an attractor: the states from which Player 1 can attract Player 2 to a ⊤-state.

Corollary: complexity of solving reachability games
Computing the winning regions is doable in linear time: O(|V | + |E |).
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Strategies for reachability games

As a by-product, we obtain the determinacy of reachability games.

Determinacy of reachability games
In a reachability game, from all states, either Player 1 or Player 2 has a winning strategy.

But the proof also shows what winning strategies look like: for Player ℓ (ℓ ∈ {1, 2}), they are
functions

σℓ : Vℓ → V .

Such a strategy is called memoryless: it only observes the current state, not the past
interaction. Never useful to try another move if revisiting the same state.

Memoryless determinacy of reachability games
In a reachability game, from all states, either Player 1 or Player 2 has a memoryless winning
strategy.
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Curiosity: infinite game graphs, ordinals

• Our algorithm terminates for finite game graphs.
• It may not terminate for infinite game graphs.
▶ Blackboard example.

• However, it would still work if we could apply it transfinitely many times!
• For instance, apply the operator infinitely many times. . . and then apply it just one more

time.
• This can be used to show that even reachability games on infinite game graphs are

memoryless-determined.
• Exercise: Find a reachability game that requires ω2 (or ωω) iterations to solve.
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Summary up to now

• We have studied reachability games, which generalize finite-horizon games.

• They are determined, and even memoryless-determined.

• We will now consider more complex objectives.

• First question: what do we mean by objective in general?
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Game objectives

• When both players stick to a strategy, they generate a play, which induces an element of
Cω.
▶ Cω = {c0c1 . . . | ∀i ≥ 0, ci ∈ C} is the set of infinite sequences of colors.

• To specify an objective, it suffices to specify all sequences that Player 1 is happy to obtain.

Definition of objective
An objective for Player 1 is a set O ⊆ Cω of infinite sequences of colors.

As games are zero-sum, the objective of Player 2 is Cω \ O.
In this framework, the reachability objective is

Reach(⊤) = {c0c1c2 . . . ∈ Cω | ∃i ≥ 0, ci = ⊤}.

Its complement is the safety objective

Safe(⊤) = {c0c1c2 . . . ∈ Cω | ∀i ≥ 0, ci ̸= ⊤}.
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Memoryless strategies do not always suffice

• C = {a, b, c}.

• Objective: see infinitely often a and infinitely often b:

O = {c0c1 . . . ∈ Cω | ∃∞i ≥ 0, ci = a ∧ ∃∞i ≥ 0, ci = b}.

a b

v1 v3v2

c

• In this game, Player 1 wins by playing acbcacbc . . . but not in a memoryless way!

• We need to define a more general kind of strategy. . .
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More general definition of strategy

A history is a finite path v0 → v1 → · · · → vn ∈ V ∗ of the game graph.
For ℓ ∈ {1, 2}, we denote by Histsℓ(G) the histories v0v1 . . . vn such that vn ∈ Vℓ.

General definition of a strategy
A strategy of Pℓ is a function σ : Histsℓ(G) → V such that if σ(v0v1 . . . vi) = vi+1,
then (vi , vi+1) is an edge of G.

Less convenient for implementation purposes:
• there are infinitely many strategies, so you cannot try them all;
• Histsℓ(G) is infinite, so representing the strategy in your computer may be challenging.
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Back to the previous example

• Memoryless strategies do not suffice for the previous example.

• C = {a, b, c}:

O = {c1c2 . . . ∈ Cω | ∃∞i ≥ 1, ci = a ∧ ∃∞i ≥ 1, ci = b}.

a b

v1 v3v2

c

• But we would still like something implementable!

• Compromise: use finite memory. Here, it suffices to remember if we just saw a or b!
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Finite-memory strategy
• We condense information from histories Histsℓ(G) into a finite object
⇝ loss of information, but hopefully sufficient to make decisions!

• A common computational model derives from automata.

Definition
Memory structure (M, minit, αupd):

finite set of states M, initial state minit ∈ M, update function αupd : M × C → M.

• Example to remember if a or b was seen last:

a b

a

b

m1 m2

• To play, we rely on the current state of G and on the current state of the memory
(here, m1 or m2).
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Illustration
We define a winning strategy σ : Vi × M → V .

a bc

a, c b, c

a

b

v1 v2 v3

m1 m2

• This information from this memory structure is sufficient to win in this graph.
• Actually, this is more general: in any game graph, if winning is possible, then this

structure is sufficient! ⇝ We will discuss why.
• We say that objective O is finite-memory determined.
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Product game

Another way to look at memory is through the product game.

Playing with memory M in game graph G
≈

Playing memoryless in the game graph G ⋉ M
Blackboard illustration.

• In the first case, the state space is V and the strategy looks at M as well.
• In the second case, the state space is V × M and the strategy is memoryless.

Memory corresponds to additional information to “inject” in the game graph
to make memoryless strategies sufficient.
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Finite memory is not always sufficient

• Unfortunately, sometimes, even finite memory is insufficient.
• Let C = {−1, 0, +1}.
• Objective: either there are only +1, or the sum of colors eventually stabilizes to 0:

O = {(+1)ω} ∪ {c0c1 . . . ∈ Cω | lim
n→∞

n∑
i=0

ci exists and is 0}.

Blackboard game graph.

• This objective requires infinite memory in some game graphs! There is a winning strategy,
but no (finite) memory structure suffices, as counting “to infinity” must be possible.
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Strategy complexity

• Hierarchy of strategies:

Memoryless (Vℓ → V ) ⊊ Finite memory (Vℓ × M → V )
⊊ General (Histsℓ(G) → V ).

• Research agenda: understand in which contexts simple strategies suffice.
▶ Classes of game graphs (finite, infinite, stochastic, etc.).
▶ Classes of objectives (O ⊆ Cω, maximizing a function f : Cω → R, maximizing the probability

of an event, etc.).

• Algorithms, complexity of computing the amount of memory needed for a given objective.

Strategy Complexity: How Much Does It Take to Win? Pierre Vandenhove 34 / 60



Why study strategy complexity?

• Finite bounds on the size of strategies usually leads to the decidability of the synthesis
problem.
▶ Over finite game graphs, there are then finitely many strategies to consider.

• Trying them all works but is not efficient; strategy complexity gives bounds on the search
space, helping design more efficient algorithms.

• For implementations, we like having compact controllers.
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Aside: Reinforcement learning

• A related area is reinforcement learning, a subfield of machine learning concerned with
how agents take actions in environments to achieve some objective.

• Most reinforcement learning algorithms (such as Q-learning) assume memoryless
strategies suffice: they learn one action to play for each state.

• Crucial to understand strategy complexity to learn decisions for complex objectives!

Gymnasium environments
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ω-regular objectives

• The ω-regular objectives are very common objectives.
• As we will see, they hold also a special place with respect to strategy complexity.
• Before defining them, we introduce regular objectives.
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Regular objectives (1/2)

Finite automata are often used to define sets of finite words. They accept the finite words
that can be read from the initial state to the final state .

qinit

qa

qb

qab

a

b

b

a

a

b

a

b

This automaton
• accepts aab ✔

• rejects aa ✗

• accepts baab ✔

• . . .
This automaton accepts exactly finite words that see both a and b.
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Exercise

Let C = {a, b}.

Build a finite automaton that accepts all finite words containing two a’s in a row.
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Regular objectives (2/2)

Sets of words that can be defined by such a finite automaton are called regular.

Strategy complexity of regular objectives
Assume the objective of Player 1 is to achieve a word from a regular set L (i.e., O = LCω).
Then, a deterministic automaton recognizing L always suffices as a memory structure to
implement winning strategies.

Proof: If we take the product of the game graph with the automaton, we reduce to a standard
reachability objective on the product, which is memoryless-determined!

Blackboard example.

In particular, games with regular objectives are finite-memory determined!
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From reachability to regular objectives

From

the memoryless determinacy of reachability objectives,

we have deduced easily

the finite-memory determinacy of regular objectives.

Are there other “canonical” objectives, such as reachability, that we could exploit?
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More complex objectives

Remember the objective

O = {c0c1 . . . ∈ Cω | ∃∞i ≥ 0, ci = a ∧ ∃∞i ≥ 0, ci = b}.

It is not a regular objective .

Can we still capture it with a more general class of automata? YES!
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Deterministic Büchi automata
A deterministic Büchi automaton B on C

• reads infinite words (in Cω),
• accepts words that see infinitely many Büchi transitions •.

qa qb

B

a b

b•

a•

This automaton
• accepts ababababa . . . ✔

• accepts aabaab . . . ✔

• rejects bbbaaaaaa . . . ✗

• . . .

What is the set of words accepted by this automaton?

{w ∈ {a, b}ω | w sees ∞ly many a and ∞ly many b}
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Exercise

Let C = {a, b}.

Build a deterministic Büchi automaton that accepts all infinite words containing
infinitely many a’s, or two a’s in a row at some point.
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Link with strategy complexity
Do you recognize the following automaton?

qa qba b

b•

a•
• It has the same structure as the memory structure we used to win for this objective!
• Instead of a reachability acceptance condition, we use a Büchi acceptance condition.
• A Büchi objective requires to see some color infinitely often:

Büchi(⊤) = {c0c1 . . . ∈ Cω | ∃∞i ≥ 0, ci = ⊤}.

• It turns out Büchi objectives are also memoryless-determined!

Memoryless determinacy of Büchi objectives
In a game with a Büchi objective, from all states, either Player 1 or Player 2 has a memoryless
winning strategy.
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From Büchi objectives to objectives recognizable by a Büchi automaton

From

the memoryless determinacy of Büchi objectives,

we can deduce

the finite-memory determinacy of objectives
recognizable by a deterministic Büchi automaton.

Proof: By taking the product of the game graph with a deterministic Büchi automaton
recognizing the objective, we reduce to a standard Büchi objective on the product game, which
is memoryless-determined!
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The need for determinism

• Observe that our memory structures are deterministic: when reading a color from a given
state, there is always exactly one possible transition.

• Some objectives are only recognizable by non-deterministic Büchi automata. . .
• This is a problem to use them as memory structures

Example: the complement of a Büchi objective is a coBüchi objective:

coBüchi(⊤) = {c0c1 . . . ∈ Cω | there are at most finitely many i ’s s.t. ci = ⊤}.

Proposition
There is a non-deterministic Büchi automaton recognizing coBüchi(⊤),
but no deterministic Büchi automaton.

Blackboard proof.
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Non-deterministic Büchi automata

The objectives recognized by non-deterministic Büchi automata are the

ω-regular objectives.

They are canonical in that they have multiple equivalent representations:

ω-regular expressions

b∗ab∗aCω

ω-automata

qinit qa qaa

a•

b
•

a•b a, b•

Linear temporal logic (LTL)

GFa

They are also closed under union, intersection, and complement.

We would like to understand their determinacy.
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Determinacy of ω-regular objectives

As a first observation, we can use the following big theorem:

Theorem (Martin, 1975)
All games with Borel objectives are determined.

No definition of Borel objectives here; however. . .
• to define a non-Borel objective, you need the axiom of choice;
• this implies that non-determined games are necessarily at least a bit strange!
• Borel objectives are much more general than ω-regular objectives!

Corollary
All games with ω-regular objectives are determined.

Can we obtain a stronger kind of determinacy?
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What we want

• Büchi automata were introduced by Büchi in the 1960s.1

• First kind of automata on infinite words.
• The issue here is that they need non-determinism to recognize all ω-regular objectives ⇝

not good for memory structures.

We are looking for
• a class of deterministic automata that recognize all ω-regular objectives,
• while using a memoryless-determined acceptance condition?

There is exactly such a class!

1Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
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Parity automata
• We still consider deterministic automata reading infinite words, but we change the

acceptance condition.
• We assume transitions are labeled by integers in a set {0, 1, . . . , d}.

An infinite word is accepted if
the largest integer seen infinitely often is even.

Example, C = {a, b}:

q1 q2

b | 2

a | 2

a | 1 b | 1

• Word aabaabaab . . . = (aab)ω ⇝ 112212212 . . . = 112(212)ω. ✔
• Word abaaa . . . = abaω ⇝ 12211 . . . = 1221ω. ✗
• . . .

O = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often along w}
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Exercise

Let C = {a, b}.

Build a parity automaton recognizing the set of words that eventually end with abababab . . .
(i.e., C∗(ab)ω)?
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Parity games

• Let C = {0, 1, . . . , d} for some d ∈ N.
• The parity objective is defined as follows: a play is winning for Player 1 if the highest

color that appears infinitely often is even.
• Formally,

Parity(C) = {c0c1 . . . ∈ Cω | lim sup
n→∞

cn is even}.

Memoryless determinacy of parity games [Emerson, Jutla, 1991]
Games with a parity objective are memoryless-determined.
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From parity objectives to ω-regular objectives

From

the memoryless determinacy of parity objectives,

and

the fact that deterministic parity automata recognize all ω-regular objectives,

we can deduce

the finite-memory determinacy of ω-regular objectives.

Proof: By taking the product of the game graph with a deterministic parity automaton
recognizing an ω-regular objective, we reduce to a standard parity objective on the product
game, which is memoryless-determined!
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Conclusion

• The finite-memory determinacy of ω-regular objectives is arguably the most important
result in the theory of infinite games.

• First shown by Rabin in 1969 for the decidability of a logical theory (S2S), in a much
more complex form.2

• Subsequent articles greatly simplified the proof, with a more direct use of games.3

• Today, this result is still heavily used to solve synthesis problems.4

• All competitive synthesis algorithms reduce to a parity game, then solve the parity game.

2Rabin, “Decidability of Second-Order Theories and Automata on Infinite Trees”, 1969.
3Gurevich and Harrington, “Trees, Automata, and Games”, 1982; Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
4Jacobs et al., “The Reactive Synthesis Competition (SYNTCOMP): 2018-2021”, 2024.
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Two open problems for the future
Open problem #1
What is the complexity of solving parity games?

• They are in NP ∩ coNP.5

• Main breakthrough (2017):6 they can be solved in quasi-polynomial time: ∼ nlog d .
• Can they be solved in polynomial time?

Open problem #2
How to find the smallest possible memory structure for a given ω-regular objective?

• The parity automaton suffices, but not always minimal!
• Recent breakthrough (2025): the related decision problem is in NP.7 Not known to be in P.

Thanks!
5Follows from their memoryless determinacy: exercise!
6Calude et al., “Deciding parity games in quasipolynomial time”, 2017.
7Casares and Ohlmann, “The Memory of ω-Regular and BC(Σ2

0) Objectives”, 2025.
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