Games Where You Can Play Optimally with Arena-Independent Finite Memory

Patricia Bouyer¹ Stéphane Le Roux¹ Youssouf Oualhadj² Mickael Randour³ Pierre Vandenhove^{1,3}

¹LSV – CNRS & ENS Paris-Saclay, Université Paris-Saclay, France ²LACL – Université Paris-Est Créteil, France ³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

September 2, 2020 - CONCUR 2020

Outline

Strategy synthesis for two-player turn-based games

Design optimal controllers for systems interacting with an antagonistic environment.

"Optimal" w.r.t. an objective or a specification.

Goal: interest in "simple" controllers

Finite-memory determinacy: when do finite-memory controllers suffice?

Inspiration

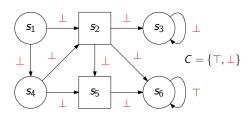
Results by Gimbert and Zielonka¹ about memoryless determinacy.

¹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

2 The need for memory

The need for memory

Two-player turn-based zero-sum games on graphs

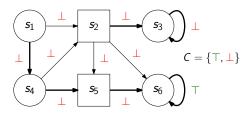


- Finite two-player arenas: S_1 (circles, for \mathcal{P}_1) and S_2 (squares, for \mathcal{P}_2), edges E.
- Set C of colors. Edges are colored.
- "Objectives" given by preference relations $\sqsubseteq \in C^{\omega} \times C^{\omega}$ (total preorder). Zero-sum, \sqsubseteq^{-1} .
- A strategy for \mathcal{P}_i is a (partial) function $\sigma \colon E^* \to E$.

Question

Given a preference relation, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.



E.g., for reachability, memoryless strategies suffice. Also suffice for safety, Büchi, co-Büchi, parity, mean-payoff, energy, average-energy. . .

Good understanding of memoryless determinacy:

- sufficient conditions to guarantee memoryless optimal strategies for both players.^{2,3}
- sufficient conditions to guarantee memoryless optimal strategies for one player.^{4,5,6}
- characterization of the preference relations admitting optimal memoryless strategies for both players.⁷

²Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

³Aminof and Rubin, "First-cycle games", 2017.

⁴Kopczynski, "Half-Positional Determinacy of Infinite Games", 2006.

⁵Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

⁶Gimbert and Kelmendi, "Two-Player Perfect-Information Shift-Invariant Submixing Stochastic Games Are Half-Positional". 2014.

⁷Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Gimbert and Zielonka's characterization⁸

Let \sqsubseteq be a preference relation. Two results:

- **1** Characterization of memoryless determinacy w.r.t. properties of \sqsubseteq .
- Corollary:

One-to-two-player memoryless lifting

lf

- ightharpoonup in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal memoryless strategy,
- ightharpoonup in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has an optimal memoryless strategy,

then both players have an optimal memoryless strategy in all **two-player** arenas.

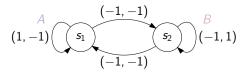
Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., mean-payoff and parity games.

⁸Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

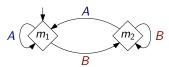
2 The need for memory

The need for memory

Memoryless strategies do not always suffice.



Büchi(A) ∧ Büchi(B): requires finite memory.



• Mean payoff ≥ 0 in both dimensions: requires **infinite memory**.⁹

→ Combinations of objectives usually require memory.

⁹Chatterjee, Doyen, et al., "Generalized Mean-payoff and Energy Games", 2010.

An attempt at lifting [GZ05] to FM determinacy

- Lack of a good understanding of finite-memory determinacy.
- Related work: sufficient properties to preserve FM determinacy in Boolean combinations of objectives.¹⁰
- Our approach:

Hope: extend Gimbert and Zielonka's results

One-to-two-player lifting for memoryless finite-memory determinacy?

¹⁰Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018

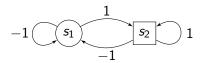
Counterexample

Let $C\subseteq \mathbb{Z}$. \mathcal{P}_1 wants to achieve a play $\pi=c_1c_2\ldots\in C^\omega$ s.t.

$$\limsup_{n} \sum_{i=0}^{n} c_{i} = +\infty \quad \text{or} \quad \exists^{\infty} n, \sum_{i=0}^{n} c_{i} = 0.$$

Optimal **FM** strategies in **one-player** arenas. . .

... but not in **two-player** arenas: \mathcal{P}_1 wins but needs **infinite memory**.



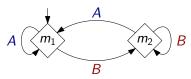
Intuition:

In one-player arenas, \mathcal{P}_1 can bound the memory he needs in advance. In two-player arenas, \mathcal{P}_2 can generate arbitrarily long sequences.

2 The need for memory

Arena-independent memory

• For $B\ddot{u}chi(A) \wedge B\ddot{u}chi(B)$, this structure suffices to play optimally on all arenas for \mathcal{P}_1 .



- The counterexample fails because in one-player arenas, the size of the memory is dependent on the size of the arena.
- Observation: for many objectives, one fixed memory structure suffices for all arenas.

"For all \mathcal{A} , does there exist \mathcal{M} ...?" \rightarrow "Does there exist \mathcal{M} , for all \mathcal{A} ...?"

Method: reproducing the approach of Gimbert and Zielonka given a memory structure \mathcal{M} .

Characterization of arena-independent determinacy

Let \sqsubseteq be preference relation, $\mathcal M$ be a memory structure.

- **I** Characterization of "playing with \mathcal{M} is sufficient" in terms of properties of \sqsubseteq .
- Corollary:

One-to-two-player lifting

lf

- lacktriangle in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal strategy with memory \mathcal{M}_1 ,
- ▶ in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has an optimal strategy with memory \mathcal{M}_2 , then both players have an optimal strategy in all **two-player** arenas with

memory $\mathcal{M}_1 \otimes \mathcal{M}_2$.

In short: the study of **one-player arenas** is sufficient to determine whether playing with arena-independent finite memory suffices.

Applicability and limits

- Applies to objectives with optimal arena-independent strategies:
 - generalized reachability, ¹¹
 - generalized parity, ¹²
 - ▶ window parity, ¹³
 - lower- and upper-bounded (multi-dimensional) energy games. 14, 15
- **Does not apply to**, e.g., multi-dimension lower-bounded energy objectives: ¹⁶ the size of the finite memory depends on the arena.

¹¹Fijalkow and Horn, "The surprizing complexity of reachability games", 2010.

 $^{^{12}\}mbox{Chatterjee},$ Henzinger, and Piterman, "Generalized Parity Games", 2007.

 $^{^{13}}$ Bruyère, Hautem, and Randour, "Window parity games: an alternative approach toward parity games with time bounds", 2016.

¹⁴Bouyer, Markey, et al., "Average-energy games", 2018.

¹⁵Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

 $^{^{16}} Chatterjee, \ Randour, \ and \ Raskin, \ "Strategy \ synthesis \ for \ multi-dimensional \ quantitative \ objectives", \ 2014.$

Conclusion

Key observation: for many objectives, arena-independent memory suffices.

Contributions

- Characterization of arena-independent finite-memory determinacy.
- One-to-two-player lifting.
- Generalization of Gimbert and Zielonka's work.

Future work

Understand (arena-**dependent**) finite-memory determinacy through the study of one-player arenas.

Thanks!