Arena-Independent Finite-Memory Determinacy in Stochastic Games

Patricia Bouyer¹, Youssouf Oualhadj², Mickael Randour³, **Pierre Vandenhove**^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²Univ Paris Est Creteil, LACL, France ³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

August 2021 - CONCUR 2021

Outline

Strategy synthesis for zero-sum turn-based stochastic games

Design **optimal** controllers for systems interacting with an **antagonistic** and **stochastic** environment.

Interest in simple controllers

Finite-memory determinacy: when do finite-memory controllers suffice?

Deterministic ~> stochastic games

Follow-up to CONCUR 2020 paper¹ about deterministic games.

¹Bouyer et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

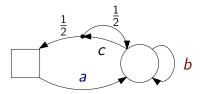
2 Arena-independent (or not) finite memory

3 Three characterizations

2 Arena-independent (or not) finite memory

3 Three characterizations

Two-player zero-sum stochastic games on graphs



- Finite arena: states S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\Box , for \mathcal{P}_2), actions A, probabilistic transitions $S \times A \rightarrow \text{Dist}(S)$.
- Set C of colors. Pairs in $S \times A$ are colored.
- A strategy for \mathcal{P}_i is a function $\sigma \colon (SA)^*S_i \to \text{Dist}(A)$.
- "Objectives" given by total preorders $\sqsubseteq \subseteq \text{Dist}(C^{\omega}) \times \text{Dist}(C^{\omega})$. Zero-sum.

Strategy complexity

Main question

Given an objective, how simple can optimal strategies be?

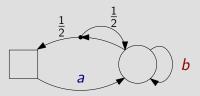
In stochastic games, two measures for strategy complexity:

- randomization of strategies;
- **memory** (how much information must be remembered).

Example

Büchi(a) ∧ Büchi(b)

Objective: maximize the probability to see both a and b infinitely often.



Using randomization or memory is sufficient.

In this work: pure (i.e., no randomization) strategies with finite memory.

2 Arena-independent (or not) finite memory

3 Three characterizations

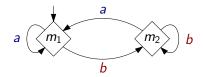
Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function $\alpha_{\text{upd}} \colon M \times C \to M$.

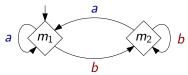
Example for $Buchi(a) \land Buchi(b)$ (not a strategy yet!):



Given an **arena**: pure **next-action function** α_{nxt} : $S_i \times M \rightarrow A$.

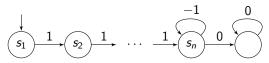
Two kinds of finite-memory determinacy

• For Büchi(a) \land Büchi(b), this structure suffices for all arenas for \mathcal{P}_1 .



→ There exists a memory structure that suffices for all arenas.

• If the objective is to bring the sum back to 0 in this class of arenas, the size of the memory is **dependent on the size of the arena**.



In this arena, \mathcal{P}_1 needs *n* memory states to win.

 \rightsquigarrow for every arena in this class, there exists a memory structure...

Pure arena-independent finite memory: examples

- **Memoryless** strategies are arena-independent (reachability,² Büchi and parity,³ discounted sum,⁴ one-counter games⁵...).
- All ω-regular objectives admit optimal arena-independent finite-memory strategies (Muller objectives,⁶ generalized parity objectives⁷...).
- Lexicographic reachability-safety objectives (memory depends on the number of targets).⁸
- Finite but **not** arena-independent: variant of energy-parity games.⁹

Arena-Independent Finite-Memory Determinacy in Stochastic Games

²Condon, "The Complexity of Stochastic Games", 1992.

³Chatterjee, Jurdzinski, and Henzinger, "Quantitative stochastic parity games", 2004.

⁴Shapley, "Stochastic Games", 1953.

⁵Brázdil, Brozek, and Etessami, "One-Counter Stochastic Games", 2010.

⁶Chatterjee, "The complexity of stochastic Müller games", 2012.

⁷Chatterjee, Henzinger, and Piterman, "Generalized Parity Games", 2007.

⁸Chatterjee, Katoen, et al., "Stochastic Games with Lexicographic Reachability-Safety Objectives", 2020.

⁹Mayr et al., "Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP", 2021.

P. Bouyer, Y. Oualhadj, M. Randour, P. Vandenhove

2 Arena-independent (or not) finite memory

3 Three characterizations

One-to-two-player lift

One-to-two-player stochastic lift

If objective \sqsubseteq is such that

- in all one-player stochastic arenas (i.e., MDPs) of P₁, P₁ has a pure optimal strategy with memory M₁,
- in all one-player stochastic arenas (i.e., MDPs) of P₂, P₂ has a pure optimal strategy with memory M₂,

then both players have a **pure** optimal strategy in all **two-player stochastic** arenas with memory $M_1 \times M_2$.

Reduces the sufficiency of pure arena-independent FM strategies in **two-player** zero-sum games to the same problem in **one-player** games.

History of one-to-two-player lifts

Classes of arenas/memory for which **two-player zero-sum** memory determinacy reduces to **one-player** determinacy.

Arenas \setminus Mem. req.	Memoryless	Arena-ind. FM	Mildly growing
Finite deterministic	[GZ05] ¹⁰	[BLORV20] ¹¹	[Koz21] ¹²
Finite stochastic	[GZ09] ¹³	New article	
Infinite deterministic	[CN06,Kop08] ¹⁴		

Arena-Independent Finite-Memory Determinacy in Stochastic Games

¹⁰Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹¹Bouyer et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

¹²Kozachinskiy, "One-to-Two-Player Lifting for Mildly Growing Memory", 2021.

¹³Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

¹⁴Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006; Kopczyński, "Half-positional Determinacy of Infinite Games", 2008.

P. Bouyer, Y. Oualhadj, M. Randour, P. Vandenhove

Two-player \rightsquigarrow **one-player**. What about one-player games?

One-player characterization

Let \sqsubseteq be an objective expressible as a payoff function $C^{\omega} \rightarrow \mathbb{R}$.

 \mathcal{M} suffices to play optimally with **pure** strategies in all **one-player** stochastic arenas of \mathcal{P}_1 if and only if \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective.

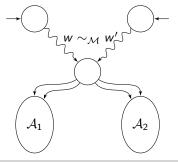
One-player characterization

Let \sqsubseteq be an objective expressible as a payoff function $C^{\omega} \rightarrow \mathbb{R}$.

 \mathcal{M} suffices to play optimally with **pure** strategies in all **one-player** stochastic arenas of \mathcal{P}_1 if and only if \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective.

We classify prefixes according to \mathcal{M} : for $w, w' \in C^*$, $w \sim_{\mathcal{M}} w'$ if $\alpha_{upd}(m_{init}, w) = \alpha_{upd}(m_{init}, w')$.

 \mathcal{M} -monotony: for all one-player arenas $\mathcal{A}_1, \mathcal{A}_2$, one arena among \mathcal{A}_1 and \mathcal{A}_2 suffices to play optimally after all prefixes in the same equivalence class of $\sim_{\mathcal{M}}$.



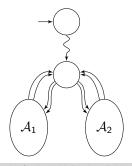
P. Bouyer, Y. Oualhadj, M. Randour, P. Vandenhove

One-player characterization

Let \sqsubseteq be an objective expressible as a payoff function $C^{\omega} \rightarrow \mathbb{R}$.

 \mathcal{M} suffices to play optimally with **pure** strategies in all **one-player** stochastic arenas of \mathcal{P}_1 if and only if \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective.

 \mathcal{M} -selective: close idea with cycles on the same state of \mathcal{M} .



P. Bouyer, Y. Oualhadj, M. Randour, P. Vandenhove

One-player characterization

Let \sqsubseteq be an objective expressible as a payoff function $C^{\omega} \rightarrow \mathbb{R}$.

 \mathcal{M} suffices to play optimally with **pure** strategies in all **one-player** stochastic arenas of \mathcal{P}_1 if and only if \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective.

A less general characterization was known in deterministic games^{15, 16} but not in stochastic games.

 $^{^{15}\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁶Bouyer et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

AIFM and subgame-perfect strategies

The proof was helped by the new following characterization:

Subgame perfection and optimality under pure AIFM strategies Given an objective, if a memory structure \mathcal{M} suffices to play **optimally** in all arenas with pure strategies, then \mathcal{M} also suffices to play **subgame-perfect** pure strategies.

Summary

Contributions

- Further the understanding of arena-independent finite-memory determinacy.
- Characterizations of arena-independent finite-memory determinacy.

Ongoing work

- Similar one-to-two-player lift for infinite arenas.
- What about the arena-dependent case?

Thanks! Questions?

Arena-Independent Finite-Memory Determinacy in Stochastic Games

P. Bouyer, Y. Oualhadj, M. Randour, P. Vandenhove