Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer¹, Antonio Casares², Mickael Randour³, **Pierre Vandenhove**^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²LaBRI, Université de Bordeaux, France ³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

September 14, 2022 - CONCUR 2022

Outline

Synthesis problem

Synthesizing **controllers** for **reactive systems** with an **objective**. Systems and their environment modeled with **zero-sum games**.

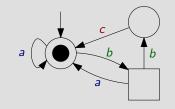
Strategy complexity

When can we implement simple and concise optimal controllers?

Results

Effective characterization of objectives admitting controllers with no need for memory, among those recognizable by **deterministic Büchi automata**.

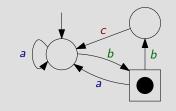
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 () and \mathcal{P}_2 ()

Motivation

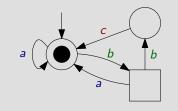
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = b

Motivation

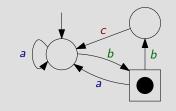
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = ba

Motivation

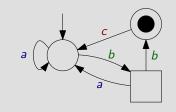
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = bab

Motivation

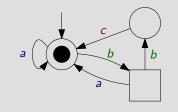
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babb

Motivation

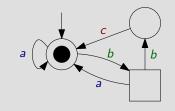
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babbc ... ∈ C^ω.

Motivation

Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box) generate an infinite word $w = babbc \ldots \in C^{\omega}$.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.

Motivation

Half-positionality

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is positional if the choices only depend on the **current** vertex, i.e., if

 $\sigma\colon V_1\to E.$

Half-positional objectives

In all games with objective W, if \mathcal{P}_1 can win with **some** strategy, can \mathcal{P}_1 also win with a **positional** strategy?

 \rightsquigarrow If yes, W is **half-positional**.

W is **bipositional** if both \mathcal{P}_1 (objective W) and \mathcal{P}_2 (objective $C^{\omega} \setminus W$) have positional winning strategies.

Half-positionality

Bipositionality is well-understood

- Characterization over finite arenas.¹
- Characterization over infinite arenas.²

Previous results on half-positionality

- Sufficient conditions for half-positionality over finite arenas.^{3,4}
- Structural characterization over infinite arenas.⁵

Might still be difficult to **decide** if an objective is half-positional!

 $^{^1 \}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

³Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

⁴Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁵Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

Common class of objectives finitely representable: ω -regular objectives.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Here

Effective characterization of **half-positional** objectives recognized by **deterministic Büchi automata** (DBA).

DBA recognize a **sub**class of the ω -regular objectives.

Deterministic Büchi automata

A deterministic Büchi automaton (DBA) \mathcal{B} on alphabet C

- reads **infinite** words (in C^{ω}),
- accepts words that see infinitely many **Büchi transitions** •.



 $\mathcal{L}(\mathcal{B}) = \{ w \in \{a, b\}^{\omega} \mid w \text{ sees } \infty \text{ly many } a \text{ and } \infty \text{ly many } b \}$

Central question

Given a DBA \mathcal{B} , is objective $W = \mathcal{L}(\mathcal{B})$ half-positional?

Half-Positional Objectives Recognized by DBA

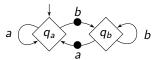
P. Bouyer, A. Casares, M. Randour, P. Vandenhove

Examples (1/2)

 $C = \{a, b\}.$

• $W = \text{Büchi}(a) = \text{"seeing } a \text{ infinitely often": half-positional.}^6$

• *W* = Büchi(*a*) ∩ Büchi(*b*): **not** half-positional.

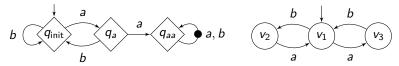


⁶Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

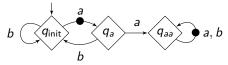
P. Bouyer, A. Casares, M. Randour, P. Vandenhove

Examples (2/2)

- $C = \{a, b\}.$
 - $W = C^* aa C^{\omega}$: **not** half-positional.



• $W = \text{Büchi}(a) \cup C^*aaC^{\omega}$: half-positional.



 \rightsquigarrow **Not** bipositional, does **not** satisfy previous sufficient conditions for half-positionality. But encompassed by our characterization!

Characterization of **half-positionality** of **DBA**-recognizable objectives with a conjunction of **three** conditions

Relations on prefixes

Let $W \subseteq C^{\omega}$ be an objective.

Accepted continuations

For
$$u \in C^*$$
, $u^{-1}W = \{w \in C^{\omega} \mid uw \in W\}$.

For $u, v \in C^*$,

- $u \sim_W v$ if $u^{-1}W = v^{-1}W$ (\approx Myhill-Nerode equivalence relation),
- $u \leq_W v$ if $u^{-1}W \subseteq v^{-1}W$ (called **prefix preorder**).

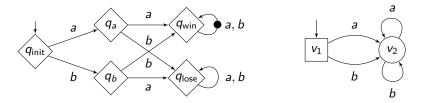
Condition 1: \leq_W is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq_W is total.

 $W = (aa + bb)C^{\omega}$: words $a, b \in C^*$ are **not** comparable for \leq_W .



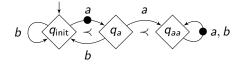
Condition 1: \leq_W is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq_W is total.

 $W = \text{Büchi}(a) \cup C^* a a C^{\omega}$: total prefix preorder \leq_W .



Condition 2: progress-consistency

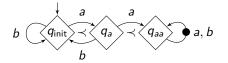
Let $W \subseteq C^{\omega}$ be an objective.

Condition 2

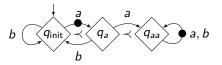
Objective W is progress-consistent if

for all $u, v \in C^*$, $u \prec_W uv$ implies $uv^{\omega} \in W$.

 C^*aaC^{ω} is not progress-consistent: $b \prec b(ba)$ but $b(ba)^{\omega} \notin W$.

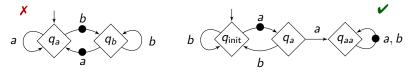


Büchi(a) $\cup C^*aaC^{\omega}$ is progressconsistent (here, $b(ba)^{\omega} \in W$).



Intuition for third condition

What distinguishes these two DBA?



- Left: needs two states for the objective, but same accepting continuations (q_a ~ q_b; same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Being "Myhill-Nerode-like" is necessary for half-positionality.

Condition 3: one state per equivalence class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is **Myhill-Nerode-like** if it can be recognized by a DBA with one state per equivalence class of \sim_W .

Remark

We consider **transition**-based acceptance, not **state**-based! W = Büchi(a) only satisfies the condition for transition-based:

Characterization

Theorem

An objective W recognized by a DBA is half-positional if and only if

- \leq_W is total,
- W is progress-consistent, and
- W is Myhill-Nerode-like.

All three conditions are decidable in **polynomial** time (by checking containment/emptiness of deterministic automata).

Conclusion

Let W be an objective recognized by a DBA \mathcal{B} .

Corollary 1: Polynomial-time algorithm

Half-positionality of *W* can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

Corollary 2: Finite-to-infinite, one-to-two-player lift

If W is half-positional over **finite one-player** games, then also over **infinite two-player** games!

Future works

- Half-positionality in all ω-regular objectives?
- More generally, memory requirements?

Thanks!