Decidability of Omega-Regular Objectives for POMDPs with Revelations [Work in progress]

Pierre Vandenhove Joint work with Nathanaël Fijalkow, Hugo Gimbert, Guillermo A. Pérez

LaBRI. Université de Bordeaux

Dagstuhl Stochastic Games – June 4, 2024

LABORATOIRE

EN INFORMATIQUE

BORDELAIS DE RECHERCHE INFORMATIQUE

Outline

Partially observable Markov decision processes (POMDPs):

- stochastic,
- nondeterministic,
- **uncertainty** about the actual state.

Goal

Strategy synthesis for **parity objectives** ($\rightsquigarrow \omega$ -regular objectives). Undecidable in general; **decidable subclasses**?

Means

Two subclasses with probabilistic guarantees about sometimes knowing the actual state.

Partially observable MDPs

States, actions, observations (strategies are only based on observations!).

Objective

- Function $p: Q \rightarrow \{0, \dots, d\}$ assigning **priorities** to **states**.
- Parity objective: the maximal priority seen infinitely often is even.
- Common subclasses:
 - **Büchi**: $p: Q \rightarrow \{1, 2\}$: something good (2) occurs infinitely often,
 - ▶ **coBüchi**: $p: Q \rightarrow \{0, 1\}$: something bad (1) occurs finitely often.
- Almost-sure strategies; "qualitative".

Theorem^{1,2}

- Almost-sure reachability, safety, and Büchi are EXPTIME-complete.
- Almost-sure **coBüchi** (and therefore **parity**) is **undecidable**.

¹Baier, Größer, and Bertrand, "Probabilistic ω -automata", 2012.

²Chatterjee, Chmelik, and Tracol, "What is decidable about partially observable Markov decision processes with *w*-regular objectives", 2016.

Example

Almost-sure strategy? Yes! Move to q_2/q'_2 infinitely often.

Example

Almost-sure strategy? Yes! Move to q_2/q'_2 when increasingly high probability to be in q'_1 .

Belief (support) MDP

Finite: only keep belief supports:

When does the analysis of the belief support MDP suffice?

Non-soundness of the belief support MDP

No almost-sure strategy in the POMDP, but OK in the belief support MDP.

(Technical detail: how to lift the priority function? Take the max.)

Incompleteness of the belief support MDP

Almost-sure strategy in the POMDP, **not** in the belief support MDP.

First revealing property

Property 1

A POMDP is **weakly revealing** if for all strategies, almost surely, the **current state is known** infinitely often.

Not weakly revealing

Weakly revealing

First revealing property

Property 1

A POMDP is **weakly revealing** if for all strategies, almost surely, the **current state is known** infinitely often.

As much information in the belief **support** MDP as in the infinite belief MDP.

Deciding the property

Deciding whether a POMDP is weakly revealing is EXPTIME-complete.

Weakly revealing POMDPs

Let \mathcal{P} be a **weakly revealing** POMDP with a parity objective.

Soundness for **parity**

Almost-sure winning strategy in the **belief support MDP** of $\mathcal{P} \Longrightarrow$ also in **POMDP** \mathcal{P} .

Reciprocal OK for Büchi and coBüchi:

Completeness for Büchi and coBüchi

Almost-sure winning strategy in **POMDP** $\mathcal{P} \Longrightarrow$ also in the **belief support MDP** of \mathcal{P} .

Analysing the belief support MDP is **sound** and **complete** for Büchi and coBüchi.

Decidability of weakly revealing POMDPs

Decidability

Almost-sure coBüchi (and Büchi) is decidable for weakly revealing POMDPs.

Algorithm: solve the **belief support MDP** ~> in EXPTIME.

Compared to general POMDPs: → makes coBüchi decidable, → simpler algorithm for Büchi.

Parity still not decidable

Belief support MDP is "incomplete" for this weakly revealing POMDP:

Undecidability

Almost-sure parity $\{1, 2, 3\}$ is undecidable for weakly revealing POMDPs.

Reduction from the value-1 problem for probabilistic automata.³

³Gimbert and Oualhadj, "Probabilistic Automata on Finite Words: Decidable and Undecidable Problems", 2010.

Second revealing property

Property 2

A POMDP is **strongly revealing** if after every action, there is **non-zero probability to know the current state**.

- Strongly revealing \implies weakly revealing.
- Easy syntactic transformation ~> "optimistic POMDP".

Completeness for **parity**

Almost-sure winning strategy in **strongly revealing POMDP** $\mathcal{P} \Longrightarrow$ also in the **belief support MDP** of \mathcal{P} .

Theorem

Almost-sure parity is decidable for strongly revealing POMDPs.

Summary

Almost-sure strategies:

	Büchi	coBüchi	Parity	coBüchi games
In general	EXPTIME	Undec.	Undec. (0,1)	Undec.
Weakly revealing	EXPTIME	EXPTIME	Undec. $(1, 2, 3)$	Undec.
Strongly revealing	EXPTIME	EXPTIME	EXPTIME	Undec.

- CoBüchi is undecidable for strongly revealing partial-observation games!
- Planning for tool support.
- Open problems:
 - Larger class where the belief support MDP is sound and complete?
 - Larger decidable classes for coBüchi/parity?

Thanks!