Decisiveness of Stochastic Systems and its Application to Hybrid Models

Patricia Bouyer¹ Thomas Brihaye² Mickael Randour^{2,3} Cédric Rivière² **Pierre Vandenhove**^{1,2,3}

¹LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France ²Université de Mons, Mons, Belgium ³F R S - FNRS

September 22, 2020 – GandALF 2020

Outline

- Verification of models combining:
 - stochastic aspects (e.g., Markov chains);
 - hybrid aspects (with both discrete and continuous transitions);

→ stochastic hybrid systems.

• Properties about **reachability** (is some set of states reached with probability 1? Probability of reaching a set?).

Goal

Identify a **decidability frontier** for reachability in stochastic hybrid systems.

Method

Follow an approach that has been successful for infinite Markov chains.¹

¹Abdulla, Ben Henda, and Mayr, "Decisive Markov Chains", 2007.

Decisiveness of Stochastic Systems and its Application to Hybrid Models

Reachability in infinite Markov chains

Let \mathcal{M} be a countable Markov chain.

Let $B \subseteq S$ be target states, $s \in S$ be an initial state.

Goal

Compute (or approximate)
$$\operatorname{Prob}_{s}^{\mathcal{M}}(\Diamond B)$$
.

We set

$$\widetilde{B} = \{s \in S \mid \mathsf{Prob}_s^{\mathcal{M}}(\Diamond B) = 0\}.$$

How to approximate the probability of reaching B?

Approximation procedure (for a given $\epsilon > 0)^2$

We define

$$\begin{cases} p_n^{\mathsf{Yes}} &= \mathsf{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} B) \\ p_n^{\mathsf{No}} &= \mathsf{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} \widetilde{B}) \,. \end{cases}$$

For all n, $p_n^{\text{Yes}} \leq \text{Prob}_s^{\mathcal{M}}(\Diamond B) \leq 1 - p_n^{\text{No}}$. We stop when $(1 - p_n^{\text{No}}) - p_n^{\text{Yes}} < \epsilon$.

²Iyer and Narasimha, "Probabilistic Lossy Channel Systems", 1997.

Decisiveness of Stochastic Systems and its Application to Hybrid Models

Example

Counterexample: diverging random walk

The procedure does not terminate for this infinite Markov chain:

Initial state: s_1 , target state: $B = \{s_0\} \implies \tilde{B} = \emptyset$. For all n,

•
$$p_n^{\text{Yes}} = \operatorname{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} B) \leq \operatorname{Prob}_{s_1}^{\mathcal{M}}(\Diamond B) = \frac{1}{2}.$$

•
$$p_n^{\mathsf{No}} = \mathsf{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} B) = 0.$$

 \rightsquigarrow For all *n*, $(1 - p_n^{\mathsf{No}}) - p_n^{\mathsf{Yes}} \geq \frac{1}{2} \dots$

Decisiveness

Let $\mathcal{M} = (S, P)$ be a countable Markov chain, $B \subseteq S$.

Decisiveness³

 \mathcal{M} is **decisive** w.r.t. $B \subseteq S$ if for all $s \in S$, $\operatorname{Prob}_{s}^{\mathcal{M}}(\Diamond B \lor \Diamond \widetilde{B}) = 1$.

Theorem³

If \mathcal{M} is decisive w.r.t. B, then the approximation procedure is correct and **terminates**.

- The diverging random walk is not decisive w.r.t. $B = \{s_0\}$.
- Decisiveness also allows for a procedure to verify **almost-sure** reachability.

Decisiveness of Stochastic Systems and its Application to Hybrid Models Bouyer, Brihaye, Randour, Rivière, Vandenhove

³Abdulla, Ben Henda, and Mayr, "Decisive Markov Chains", 2007.

Contribution: generalized decisiveness criterion

Proposition

Let \mathcal{T} be an stochastic transition system with an **attractor** $A \subseteq S$ and $B \subseteq S$ a set of states.

If there exists p > 0 such that

$$\forall s \in A \cap (\widetilde{B})^c$$
, $\mathsf{Prob}_s^{\mathcal{T}}(\Diamond B) \geq p$,

then \mathcal{T} is decisive w.r.t. B.

Hybrid systems

- (*L*, *E*) is a **finite graph**.
- A number *n* of continuous variables
 → states of the system are in *L* × ℝⁿ → uncountable!
- For each $\ell \in L$, $\gamma_{\ell} : \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}^n$ is a **continuous dynamics**.
- For each edge $e \in E$, $\mathcal{G}(e) \subseteq \mathbb{R}^n$ is a **guard**.
- For each edge $e \in E$, $\mathcal{R}(e) : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is a **reset map**.

Transitions of hybrid systems

States: $L \times \mathbb{R}^n$ (discrete location \times value of the continuous variables).

A transition combines a **continuous evolution** and a **discrete transition**. Example: initial state is $s = (\ell_1, (2, 0))$;

- we stay in ℓ_1 for some **time** $\tau \ge 0$;
- we take an edge whose guard is satisfied;
- we take a value among the possible **resets**, e.g. $s' = (\ell_2, (\frac{1}{2}, \frac{1}{2}))$.

Adding stochasticity

We replace the nondeterminism of hybrid systems with probability distributions on the:

- waiting time from a given state;
- edge choice;
- choice of a reset value.

→ Stochastic hybrid systems (SHSs)

Undecidability

Undecidability of reachability for SHSs

Given an SHS \mathcal{H} , an initial distribution μ on the states of \mathcal{H} and a target set $B \subseteq L \times \mathbb{R}^n$, the reachability problems

- $\mathsf{Prob}^{\mathcal{H}}_{\mu}(\Diamond B) = 1?$
- $\mathsf{Prob}^{\mathcal{H}}_{\mu}(\Diamond B) = 0?$
- is a value ϵ -close to $\operatorname{Prob}_{\mu}^{\mathcal{H}}(\Diamond B)$?

are undecidable.

 \rightsquigarrow inspired from an undecidability proof for hybrid systems.⁴

Goal

Find a setting in which reachability is decidable.

⁴Henzinger et al., "What's Decidable about Hybrid Automata?", 1998.

Decisiveness of Stochastic Systems and its Application to Hybrid Models Bouyer, Brihaye, Randour, Rivière, Vandenhove

Reachability problems in stochastic systems

To deal with an uncountable number of states \rightsquigarrow "finite abstraction".

Abstraction of a **stochastic** hybrid system

- **Abstraction** whenever $p > 0 \Leftrightarrow q > 0$.
- Sound abstraction whenever

$$\operatorname{Prob}^{\mathcal{T}_2}(\Diamond B) = 1 \implies \operatorname{Prob}^{\mathcal{T}_1}(\Diamond \alpha^{-1}(B)) = 1.$$

Decidable classes for reachability

Hybrid systems: existence of a finite time-abstract bisimulation

- Timed automata⁵ ($\dot{x} = 1, x := 0$; region graph);
- Initialized rectangular hybrid systems;⁶
- O-minimal hybrid systems⁷ (rich dynamics, all variables have to be reset at every discrete transition).

SHSs: existence of a finite and sound abstraction

- Single-clock stochastic timed automata;⁸
- Reactive stochastic timed automata.⁸

 \rightsquigarrow Proof of soundness: finite abstraction + decisiveness.

⁵Alur and Dill, "Automata For Modeling Real-Time Systems", 1990.

⁶Henzinger et al., "What's Decidable about Hybrid Automata?", 1998.

⁷Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.

⁸Bertrand et al., "When are stochastic transition systems tameable?", 2018.

Plan to make reachability decidable: strong resets

We restrict our focus to SHSs with **strong resets**.⁹ Strong reset = reset that does not depend on the value of the variables.

Example: x follows a uniform dist. in [x - 1, x + 1] is not a strong reset. x follows a uniform distribution in [-1, 1] is a strong reset.

⁹Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.

Decisiveness of Stochastic Systems and its Application to Hybrid Models

Consequences of strong resets

Proposition

If an SHS has (at least) one strong reset per cycle of the discrete graph, it

- has a finite abstraction;
- is **decisive** w.r.t. any set of states.

 \rightsquigarrow Reachability is decidable when the abstraction is computable!

Putting everything together

Proposition

Let \mathcal{H} be an SHS with one strong reset per cycle. If the sound and finite abstraction is computable, then

- almost-sure reachability is decidable;
- adding numerical hypotheses on the distributions, we can compute an approximation of the probability to reach a set of states.

Setting in which the abstraction is computable

- The different components (flows, guards...) are definable in an ominimal structure with decidable theory (such as ⟨ℝ, <, +, ·, 0, 1⟩);
- The various probability distributions are either finite or equivalent to the Lebesgue measure on their support.

Conclusion: decidable classes of hybrid systems

Hybrid systems: existence of a finite time-abstract bisimulation

- Timed automata;¹⁰
- Initialized rectangular hybrid systems;¹¹
- O-minimal hybrid systems.¹²

SHSs: existence of a sound and finite abstraction

- Single-clock stochastic timed automata;¹³
- Reactive stochastic timed automata;¹³
- Strongly-reset stochastic hybrid systems.

→ Reachability is **decidable** under effectiveness assumptions.
 → Soundness is shown through the **decisiveness** property.

¹⁰Alur and Dill, "Automata For Modeling Real-Time Systems", 1990.
¹¹Henzinger et al., "What's Decidable about Hybrid Automata?", 1998.
¹²Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.
¹³Bertrand et al., "When are stochastic transition systems tameable?", 2018.

Decisiveness of Stochastic Systems and its Application to Hybrid Models