Decisiveness of Stochastic Systems and its Application to Hybrid Models

Patricia Bouver¹ Thomas Brihaye² Mickael Randour^{2,3} Cédric Rivière² **Pierre Vandenhove**1,2,3

¹LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France ²Université de Mons, Mons, Belgium $3F$ R S -FNRS

September 22, 2020 – GandALF 2020

Outline

- **Verification** of models combining:
	- **stochastic** aspects (e.g., Markov chains);
	- **hybrid** aspects (with both discrete and continuous transitions);

stochastic hybrid systems.

• Properties about **reachability** (is some set of states reached with probability 1? Probability of reaching a set?).

Goal

Identify a **decidability frontier** for reachability in stochastic hybrid systems.

Method

Follow an approach that has been successful for **infinite Markov chains**. 1

 $1A$ bdulla, Ben Henda, and Mayr, ["Decisive Markov Chains",](#page-0-0) 2007.

Reachability in infinite Markov chains

Let M be a countable Markov chain.

Let $B \subseteq S$ be target states, $s \in S$ be an initial state.

Goal

Compute (or approximate)
$$
\mathsf{Prob}_{s}^{\mathcal{M}}(\Diamond B)
$$
.

We set

$$
\widetilde{B} = \{s \in S \mid \mathsf{Prob}_{s}^{\mathcal{M}}(\Diamond B) = 0\}.
$$

How to approximate the probability of reaching B ?

Approximation procedure (for a given $\epsilon > 0$)²

We define

$$
\begin{cases}\n p_n^{\text{Yes}} &= \text{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} B) \\
p_n^{\text{No}} &= \text{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} \widetilde{B}).\n\end{cases}
$$

For all *n*, $p_n^{\text{Yes}} \le \text{Prob}_s^{\mathcal{M}}(\Diamond B) \le 1 - p_n^{\text{No}}$. We stop when No Yes

$$
(1-p_n^{\text{No}})-p_n^{\text{Yes}}<\epsilon.
$$

2 Iyer and Narasimha, ["Probabilistic Lossy Channel Systems",](#page-0-0) 1997.

Example

Counterexample: diverging random walk

The procedure does not terminate for this infinite Markov chain:

Initial state: s_1 , target state: $B = \{s_0\} \Longrightarrow \overline{B} = \emptyset$. For all *n*,

\n- $$
p_n^{\text{Yes}} = \text{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} B) \leq \text{Prob}_{s_1}^{\mathcal{M}}(\Diamond B) = \frac{1}{2}.
$$
\n- $p_n^{\text{No}} = \text{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} \widetilde{B}) = 0.$
\n

 \rightsquigarrow For all *n*, $(1 - \rho_n^{\text{No}}) - \rho_n^{\text{Yes}} \ge \frac{1}{2}$ $\frac{1}{2}$...

Decisiveness

Let $M = (S, P)$ be a countable Markov chain, $B \subseteq S$.

Decisiveness³

M is **decisive** w.r.t. $B \subseteq S$ if for all $s \in S$, $\mathsf{Prob}_{s}^{\mathcal{M}}(\Diamond B \lor \Diamond \widetilde{B}) = 1$.

Theorem³

If M is decisive w.r.t. B , then the approximation procedure is correct and **terminates**.

- The diverging random walk is not decisive w.r.t. $B = \{s_0\}$.
- Decisiveness also allows for a procedure to verify **almost-sure reachability**.

³Abdulla, Ben Henda, and Mayr, ["Decisive Markov Chains",](#page-0-0) 2007.

Contribution: generalized decisiveness criterion

Proposition

Let $\mathcal T$ be an stochastic transition system with an **attractor** $A \subseteq S$ and $B\subseteq S$ a set of states.

If there exists $p > 0$ such that

$$
\forall s \in A \cap (\widetilde{B})^c, \mathsf{Prob}_s^{\mathcal{T}}(\Diamond B) \geq p,
$$

then T is decisive w.r.t. B .

Hybrid systems

- (L*,* E) is a **finite graph**.
- A number n of **continuous variables** \rightsquigarrow states of the system are in $L \times \mathbb{R}^n \rightsquigarrow$ **uncountable**!
- For each $\ell \in L$, $\gamma_{\ell} : \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}^n$ is a **continuous dynamics**.
- For each edge $e \in E$, $\mathcal{G}(e) \subseteq \mathbb{R}^n$ is a **guard**.
- For each edge $e \in E$, $\mathcal{R}(e) : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is a **reset map**.

Transitions of hybrid systems

States: $L \times \mathbb{R}^n$ (discrete location \times value of the continuous variables).

A transition combines a **continuous evolution** and a **discrete transition**. Example: initial state is $s = (\ell_1, (2, 0))$;

- we stay in ℓ_1 for some **time** $\tau > 0$;
- we take an **edge** whose guard is satisfied;
- we take a value among the possible **resets**, e.g. $s' = (\ell_2, (\frac{1}{2})^2)$ $\frac{1}{2}$, $\frac{1}{2}$ $(\frac{1}{2})$.

Adding stochasticity

We replace the nondeterminism of hybrid systems with probability distributions on the:

- waiting time from a given state;
- edge choice;
- choice of a reset value.

Stochastic hybrid systems (**SHSs**)

Undecidability

Undecidability of reachability for SHSs

Given an SHS H, an initial distribution μ on the states of H and a target set $B \subseteq L \times \mathbb{R}^n$, the reachability problems

- $\mathsf{Prob}_{\mu}^{\mathcal{H}}(\Diamond B) = 1$?
- $\mathsf{Prob}_{\mu}^{\mathcal{H}}(\Diamond B)=0$?
- $\bullet\,$ is a value $\epsilon\text{-close}$ to $\mathsf{Prob}^{\mathcal{H}}_{\mu}(\Diamond B)?$

are **undecidable**.

 \rightsquigarrow inspired from an undecidability proof for hybrid systems.⁴

Goal

Find a setting in which reachability is decidable.

⁴Henzinger et al., ["What's Decidable about Hybrid Automata?",](#page-0-0) 1998. [Decisiveness of Stochastic Systems and its Application to Hybrid Models](#page-0-1) Bouyer, Brihaye, Randour, Rivière, Vandenhove

Reachability problems in **stochastic** systems

To deal with an uncountable number of states \rightsquigarrow "finite abstraction".

Abstraction of a **stochastic** hybrid system

- **Abstraction** whenever $p > 0 \Leftrightarrow q > 0$.
- **Sound** abstraction whenever

$$
\mathsf{Prob}^{\mathcal{T}_2}(\Diamond B) = 1 \implies \mathsf{Prob}^{\mathcal{T}_1}(\Diamond \alpha^{-1}(B)) = 1.
$$

Decidable classes for reachability

Hybrid systems: existence of a finite time-abstract bisimulation

- \bullet Timed automata⁵ ($\dot{x} = 1, x \coloneqq 0$; region graph);
- Initialized rectangular hybrid systems; $⁶$ </sup>
- \bullet O-minimal hybrid systems⁷ (rich dynamics, all variables have to be reset at every discrete transition).

SHSs: existence of a finite and **sound** abstraction

- Single-clock stochastic timed automata; 8
- Reactive stochastic timed automata. 8

 \rightsquigarrow Proof of soundness: **finite abstraction** $+$ **decisiveness**.

⁵Alur and Dill, ["Automata For Modeling Real-Time Systems",](#page-0-0) 1990.

⁶Henzinger et al., ["What's Decidable about Hybrid Automata?",](#page-0-0) 1998.

⁷Lafferriere, Pappas, and Sastry, ["O-Minimal Hybrid Systems",](#page-0-0) 2000.

⁸Bertrand et al., ["When are stochastic transition systems tameable?",](#page-0-0) 2018.

Plan to make reachability decidable: strong resets

We restrict our focus to SHSs with **strong resets**. 9 Strong reset $=$ reset that does not depend on the value of the variables.

Example: x follows a uniform dist. in $[x - 1, x + 1]$ is not a strong reset. x follows a uniform distribution in [−1*,* 1] **is** a strong reset.

⁹Lafferriere, Pappas, and Sastry, ["O-Minimal Hybrid Systems",](#page-0-0) 2000.

Consequences of strong resets

Proposition

If an SHS has (at least) one **strong reset** per cycle of the discrete graph, it

- has a **finite abstraction**;
- is **decisive** w.r.t. any set of states.

 \rightsquigarrow Reachability is decidable when the abstraction is computable!

Putting everything together

Proposition

Let H be an SHS with one **strong reset** per cycle. If **the sound and finite abstraction is computable**, then

- almost-sure reachability is decidable;
- adding numerical hypotheses on the distributions, we can compute an approximation of the probability to reach a set of states.

Setting in which the abstraction is computable

- The different components (flows, guards. . .) are definable in an **ominimal structure** with **decidable** theory (such as $\langle \mathbb{R}, \langle , +, \cdot, 0, 1 \rangle$);
- The various probability distributions are either finite or equivalent to the Lebesgue measure on their support.

Conclusion: decidable classes of hybrid systems

Hybrid systems: existence of a finite time-abstract bisimulation

- \bullet Timed automata: 10
- Initialized rectangular hybrid systems; 11
- O-minimal hybrid systems.¹²

SHSs: existence of a sound and finite abstraction

- Single-clock stochastic timed automata; 13
- Reactive stochastic timed automata: 13
- **Strongly-reset stochastic hybrid systems**.

 \rightsquigarrow Reachability is **decidable** under effectiveness assumptions. \rightsquigarrow Soundness is shown through the **decisiveness** property.

¹⁰Alur and Dill, ["Automata For Modeling Real-Time Systems",](#page-0-0) 1990.

¹¹ Henzinger et al., ["What's Decidable about Hybrid Automata?",](#page-0-0) 1998.

¹²Lafferriere, Pappas, and Sastry, ["O-Minimal Hybrid Systems",](#page-0-0) 2000.

¹³Bertrand et al., ["When are stochastic transition systems tameable?",](#page-0-0) 2018.