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Outline
• Verification of models combining:

• stochastic aspects (e.g., Markov chains);

• hybrid aspects (with both discrete and continuous transitions);

 stochastic hybrid systems.

• Properties about reachability (is some set of states reached with
probability 1? Probability of reaching a set?).

Goal
Identify a decidability frontier for reachability in stochastic hybrid systems.

Method
Follow an approach that has been successful for infinite Markov chains.1

1Abdulla, Ben Henda, and Mayr, “Decisive Markov Chains”, 2007.
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Reachability in infinite Markov chains

LetM be a countable Markov chain.
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Target: {a}

{̃a} = {d}

Let B ⊆ S be target states, s ∈ S be an initial state.

Goal
Compute (or approximate) ProbMs (♦B).

We set
B̃ = {s ∈ S | ProbMs (♦B) = 0} .
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How to approximate the probability of reaching B?

Approximation procedure (for a given ε > 0)2

We define {
pYes

n = ProbMs (♦≤n B)
pNo

n = ProbMs (♦≤n B̃) .

For all n, pYes
n ≤ ProbMs (♦B) ≤ 1− pNo

n .
We stop when

(1− pNo
n )− pYes

n < ε .

2Iyer and Narasimha, “Probabilistic Lossy Channel Systems”, 1997.
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Example
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Target: {a}
=⇒ {̃a} = {d}.
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; pYes0 = 0, pNo0 = 0,

; pYes1 = 0, pNo1 = 1
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No
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2,
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··
·

 1
4 ≤ ProbMc (♦{a}) ≤ 1− 5

8 = 3
8 .  Always terminates?
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Counterexample: diverging random walk

The procedure does not terminate for this infinite Markov chain:
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Initial state: s1, target state: B = {s0} =⇒ B̃ = ∅. For all n,
• pYes

n = ProbMs1 (♦≤n B) ≤ ProbMs1 (♦B) = 1
2 .

• pNo
n = ProbMs1 (♦≤n B̃) = 0.

 For all n, (1− pNo
n )− pYes

n ≥ 1
2 . . .
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Decisiveness

LetM = (S,P) be a countable Markov chain, B ⊆ S.

Decisiveness3

M is decisive w.r.t. B ⊆ S if for all s ∈ S, ProbMs (♦B ∨ ♦B̃) = 1.

Theorem3

IfM is decisive w.r.t. B, then the approximation procedure is correct and
terminates.

• The diverging random walk is not decisive w.r.t. B = {s0}.

• Decisiveness also allows for a procedure to verify almost-sure
reachability.

3Abdulla, Ben Henda, and Mayr, “Decisive Markov Chains”, 2007.
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Contribution: generalized decisiveness criterion

Proposition
Let T be an stochastic transition system with an attractor A ⊆ S and
B ⊆ S a set of states.
If there exists p > 0 such that

∀s ∈ A ∩ (B̃)c ,ProbTs (♦B) ≥ p ,
then T is decisive w.r.t. B.

T

A

B B̃

≥ p
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Hybrid systems

`1 `2`3

x

y

x

yy

x

y ≤ −1
x , y := 0

y ≥ 1

x , y ∈ [−1, 1]

• (L,E ) is a finite graph.
• A number n of continuous variables
 states of the system are in L× Rn  uncountable!
• For each ` ∈ L, γ` : Rn × R+ → Rn is a continuous dynamics.
• For each edge e ∈ E , G(e) ⊆ Rn is a guard.
• For each edge e ∈ E , R(e) : Rn → 2Rn is a reset map.
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Transitions of hybrid systems

States: L× Rn (discrete location × value of the continuous variables).

`1 `2`3

y ≤ −1
x , y := 0

y ≥ 1

x , y ∈ [−1, 1]

τ

y ≥ 1
s

s ′

x , y ∈ [−1, 1]

A transition combines a continuous evolution and a discrete transition.
Example: initial state is s = (`1, (2, 0));
• we stay in `1 for some time τ ≥ 0;
• we take an edge whose guard is satisfied;
• we take a value among the possible resets, e.g. s ′ = (`2, (12 ,

1
2)).
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Adding stochasticity

We replace the nondeterminism of hybrid systems with probability
distributions on the:
• waiting time from a given state;
• edge choice;
• choice of a reset value.

 Stochastic hybrid systems (SHSs)
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Undecidability

Undecidability of reachability for SHSs
Given an SHS H, an initial distribution µ on the states of H and a target
set B ⊆ L× Rn, the reachability problems
• ProbHµ (♦B) = 1?
• ProbHµ (♦B) = 0?
• is a value ε-close to ProbHµ (♦B)?

are undecidable.

 inspired from an undecidability proof for hybrid systems.4

Goal
Find a setting in which reachability is decidable.

4Henzinger et al., “What’s Decidable about Hybrid Automata?”, 1998.
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Reachability problems in stochastic systems

To deal with an uncountable number of states  “finite abstraction”.
Abstraction of a stochastic hybrid system

· · ·

· · ·

· · ·

· · ·

· · ·

T1

α

T2

· · ·

· · ·

p > 0 q > 0p′ = 1 q′ = 1

• Abstraction whenever p > 0⇔ q > 0.

• Sound abstraction whenever
ProbT2(♦B) = 1 =⇒ ProbT1(♦α−1(B)) = 1 .
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Decidable classes for reachability
Hybrid systems: existence of a finite time-abstract bisimulation

• Timed automata5 (ẋ = 1, x := 0; region graph);
• Initialized rectangular hybrid systems;6
• O-minimal hybrid systems7 (rich dynamics, all variables have to be reset

at every discrete transition).

SHSs: existence of a finite and sound abstraction
• Single-clock stochastic timed automata;8
• Reactive stochastic timed automata.8

 Proof of soundness: finite abstraction + decisiveness.

5Alur and Dill, “Automata For Modeling Real-Time Systems”, 1990.
6Henzinger et al., “What’s Decidable about Hybrid Automata?”, 1998.
7Lafferriere, Pappas, and Sastry, “O-Minimal Hybrid Systems”, 2000.
8Bertrand et al., “When are stochastic transition systems tameable?”, 2018.
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Plan to make reachability decidable: strong resets

We restrict our focus to SHSs with strong resets.9
Strong reset = reset that does not depend on the value of the variables.

Example: x follows a uniform dist. in [x − 1, x + 1] is not a strong reset.
x follows a uniform distribution in [−1, 1] is a strong reset.

x x−2 2
x ∼ U(−1, 1) −1 1

9Lafferriere, Pappas, and Sastry, “O-Minimal Hybrid Systems”, 2000.
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Consequences of strong resets

Proposition
If an SHS has (at least) one strong reset per cycle of the discrete graph, it
• has a finite abstraction;

• is decisive w.r.t. any set of states.

strong resets
=⇒

=⇒

finite abstraction

decisiveness
{sound and finite

abstraction
+

decisiveness
criterion

 Reachability is decidable when the abstraction is computable!
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Putting everything together

Proposition
Let H be an SHS with one strong reset per cycle.
If the sound and finite abstraction is computable, then
• almost-sure reachability is decidable;

• adding numerical hypotheses on the distributions, we can compute an
approximation of the probability to reach a set of states.

Setting in which the abstraction is computable

• The different components (flows, guards. . . ) are definable in an o-
minimal structure with decidable theory (such as 〈R, <,+, ·, 0, 1〉);

• The various probability distributions are either finite or equivalent to
the Lebesgue measure on their support.
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Conclusion: decidable classes of hybrid systems
Hybrid systems: existence of a finite time-abstract bisimulation

• Timed automata;10
• Initialized rectangular hybrid systems;11
• O-minimal hybrid systems.12

SHSs: existence of a sound and finite abstraction
• Single-clock stochastic timed automata;13
• Reactive stochastic timed automata;13
• Strongly-reset stochastic hybrid systems.

 Reachability is decidable under effectiveness assumptions.
 Soundness is shown through the decisiveness property.

10Alur and Dill, “Automata For Modeling Real-Time Systems”, 1990.
11Henzinger et al., “What’s Decidable about Hybrid Automata?”, 1998.
12Lafferriere, Pappas, and Sastry, “O-Minimal Hybrid Systems”, 2000.
13Bertrand et al., “When are stochastic transition systems tameable?”, 2018.
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