Arena-Independent Finite-Memory Strategies

Pierre Vandenhove^{1,2}

Based on joint work with Patricia Bouyer¹, Stéphane Le Roux¹, Youssouf Oualhadi³, Mickael Randour².

> ¹LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium ³LACL – Université Paris-Est Créteil, France

> April 23, 2021 – GT Model-Checking & Synthèse

Outline

Strategy synthesis for two-player turn-based games

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

"Optimal" w.r.t. an objective or a specification.

Goal: interest in "simple" controllers

Finite-memory determinacy: when do finite-memory controllers suffice?

Inspiration

Results by Gimbert and Zielonka^{1,2} about **memoryless** determinacy.

¹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

Content

Overview of two papers:

- First results on deterministic games: *Games Where You Can Play Optimally with Arena-Independent Finite Memory*, CONCUR 2020.³
- Improvement and extension of our results to stochastic games: Arena-Independent Finite-Memory Determinacy in Stochastic Games, 2021.⁴

³https://drops.dagstuhl.de/opus/volltexte/2020/12836/

⁴https://arxiv.org/abs/2102.10104

1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory

4 Stochastic games

Arena-Independent Finite-Memory Strategies

Pierre Vandenhove

1 Memoryless determinacy

2 The need for memory

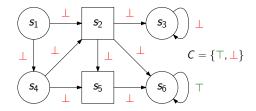
3 Arena-independent finite memory

4 Stochastic games

Arena-Independent Finite-Memory Strategies

Pierre Vandenhove

Two-player turn-based zero-sum games on graphs



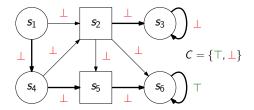
- Finite two-player arenas: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\Box , for \mathcal{P}_2), edges E.
- Set C of colors. Edges are colored.
- "Objectives" given by preference relations ⊑ ∈ C^ω × C^ω (total preorder). Zero-sum.
- A strategy for \mathcal{P}_i is a (partial) function $\sigma \colon E^* \to E$.

Memoryless determinacy

Question

Given a preference relation, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.



E.g., for reachability, **memoryless** strategies suffice to play optimally. Also suffice for safety, Büchi, co-Büchi, parity, mean payoff, energy, average-energy...

Memoryless determinacy

Good understanding of memoryless determinacy:

- sufficient conditions to guarantee memoryless optimal strategies for both players.^{5,6}
- sufficient conditions to guarantee memoryless optimal strategies for one player.^{7,8,9}
- characterization of the preference relations admitting optimal memoryless strategies for both players.¹⁰

⁵Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

⁶Aminof and Rubin, "First-cycle games", 2017.

⁷Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

⁸Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

 $^{^9 {\}rm Gimbert}$ and Kelmendi, "Two-Player Perfect-Information Shift-Invariant Submixing Stochastic Games Are Half-Positional", 2014.

¹⁰Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Gimbert and Zielonka's characterization

Let \sqsubseteq be a preference relation. One of the two main results:

One-to-two-player memoryless lift¹¹

lf

• in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal memoryless strategy,

• in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has an optimal memoryless strategy, then both players have an optimal memoryless strategy in all **two-player** arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., parity and **mean-payoff** games.

¹¹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Application: memoryless determinacy of mean payoff

Colors C = Z. Objective: maximize (for P₁) or minimize (for P₂) the mean payoff (average weight by transition).

 In one-player arenas, simply reach and loop around the simple cycle with the greatest (for P₁) or smallest (for P₂) mean payoff → memoryless strategy.

 $\implies {\sf Memoryless\ strategies\ also\ suffice\ to\ play\ optimally} \\ {\sf in\ two-player\ arenas!}$

1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory

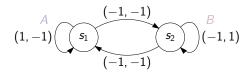
4 Stochastic games

Arena-Independent Finite-Memory Strategies

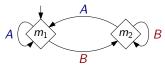
Pierre Vandenhove

The need for memory

Memoryless strategies do not always suffice.



• Büchi(A) \land Büchi(B): requires **finite memory**.



- Mean payoff ≥ 0 in both dimensions: requires infinite memory.¹²
- ~ Combinations of objectives usually require memory.

¹²Chatterjee, Doyen, et al., "Generalized Mean-payoff and Energy Games", 2010.

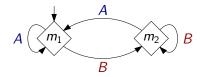
Finite memory

Finite memory \approx memory structure + next-action function.

Memory structure

Memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function $\alpha_{\text{upd}} \colon M \times C \to M$.

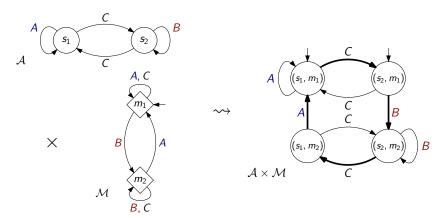
Example for $Buchi(A) \wedge Buchi(B)$ (**not yet a strategy!**):



Given an arena $\mathcal{A} = (S_1, S_2, E)$: *next-action function* $\alpha_{nxt} : S_i \times M \to E$.

Finite memory

Playing with memory \mathcal{M} in $\mathcal{A} \approx$ playing memoryless in the arena $\mathcal{A} \times \mathcal{M}$. Büchi(\mathcal{A}) \land Büchi(\mathcal{B}):



An attempt at lifting [GZ05] to FM determinacy

- Lack of a good understanding of finite-memory determinacy.
- Related work: sufficient properties to preserve FM determinacy in Boolean combinations of objectives.¹³
- Our approach:

Hope: extend Gimbert and Zielonka's results

One-to-two-player lift for memoryless finite-memory determinacy?

¹³Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

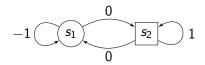
Counterexample to our hope

Let $C \subseteq \mathbb{Z}$. \mathcal{P}_1 wants to achieve a play $\pi = c_1 c_2 \ldots \in C^{\omega}$ s.t.

$$\limsup_{n} \sup_{i=1}^{n} c_{i} = +\infty \quad \text{or} \quad \exists^{\infty} n, \sum_{i=1}^{n} c_{i} = 0.$$

Optimal FM strategies in one-player arenas...

... not in two-player arenas: here, \mathcal{P}_1 wins but needs infinite memory.



Intuition:

In one-player arenas, \mathcal{P}_1 can bound the needed memory in advance. In two-player arenas, \mathcal{P}_2 can generate arbitrarily long sequences. 1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory

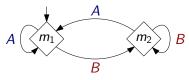
4 Stochastic games

Arena-Independent Finite-Memory Strategies

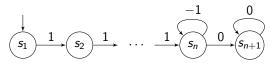
Pierre Vandenhove

Distinction between the examples

• For $\text{Büchi}(A) \land \text{Büchi}(B)$, this structure suffices for all arenas for \mathcal{P}_1 .



• The counterexample fails because in one-player arenas, the size of the memory is **dependent on the size of the arena**.



In this arena, \mathcal{P}_1 needs *n* memory states to win.

Observation: for many objectives, one **fixed memory structure** suffices **for all arenas**.

"For all \mathcal{A} , does there exist \mathcal{M} ...?" \rightarrow "Does there exist \mathcal{M} , for all \mathcal{A} ...?"

Method: reproducing the approach of Gimbert and Zielonka given an "arena-independent" memory structure \mathcal{M} .

Characterization of arena-independent determinacy

Let \sqsubseteq be preference relation and $\mathcal{M}_1,$ \mathcal{M}_2 be memory structures.

One-to-two-player arena-independent lift¹⁴

lf

- in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal strategy with memory \mathcal{M}_1 ,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has an optimal strategy with memory \mathcal{M}_2 ,

then both players have an optimal strategy in all two-player arenas with memory $\mathcal{M}_1 \times \mathcal{M}_2$.

In short: the study of **one-player arenas** is sufficient to determine whether playing with **arena-independent finite memory** suffices.

We recover [GZ05] with $\mathcal{M}_1 = \mathcal{M}_2 = (\{m_{\text{init}}\}, m_{\text{init}}, (m_{\text{init}}, c) \mapsto m_{\text{init}}).$

¹⁴Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

Proof technique

One-to-two-player memoryless lift¹⁵

If both players have optimal memoryless strategies in **one-player** arenas, then both players have optimal memoryless strategies in **two-player** arenas.

¹⁵Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Issue for arena-independent lift

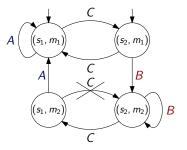
Let \mathcal{M}_1 , \mathcal{M}_2 be memory structures.

One-to-two-player arena-independent lift

If in all **one-player** arenas of $\mathcal{P}_1/\mathcal{P}_2$, $\mathcal{P}_1/\mathcal{P}_2$ has an optimal strategy with memory $\mathcal{M}_1/\mathcal{M}_2$, then both players have an optimal strategy in all **two-player** arenas with memory $\mathcal{M}_1 \times \mathcal{M}_2$.

Same inductive argument on all **product** arenas with $\mathcal{M}_1 \times \mathcal{M}_2$?

Issue: product arenas are not closed by edge removals.



We consider the broader class of *covered* arenas.

Covered arenas

An arena $\mathcal{A} = (S, S_1, S_2, E)$ is covered by $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ from $S_{\text{init}} \subseteq S$ if there exists a function $\phi \colon S \to M$ such that $\phi(S_{\text{init}}) = \{m_{\text{init}}\}$ and for all $(s, c, s') \in E$, $\alpha_{\text{upd}}(\phi(s), c) = \phi(s')$.

Products are covered. Arenas covered by \mathcal{M} are closed by edge removals.

One-to-two-player arena-independent lift

Proof sketch:

- Hypothesis: strategies with memory \mathcal{M}_1 , \mathcal{M}_2 in all one-player arenas
- \rightsquigarrow Memoryless strategies in one-player product arenas with \mathcal{M}_1 , \mathcal{M}_2
- \rightsquigarrow Memoryless strategies in one-player arenas *covered* by $\mathcal{M}_1 \times \mathcal{M}_2$
- \rightsquigarrow Memoryless strategies in two-player arenas *covered* by $\mathcal{M}_1 \times \mathcal{M}_2$ (induction on edges)
- \rightsquigarrow Strategies with memory $\mathcal{M}_1 \times \mathcal{M}_2$ in all two-player arenas.

Applicability and limits

Applies to objectives with optimal arena-independent strategies:

- generalized reachability, ¹⁶
- generalized parity,¹⁷
- window parity, ¹⁸
- Iower- and upper-bounded (multi-dimensional) energy games.^{19, 20}
- **Does not apply to**, e.g., multi-dimension lower-bounded energy objectives:²¹ the size of the finite memory depends on the arena.

¹⁶Fijalkow and Horn, "The surprizing complexity of reachability games", 2010.

¹⁷Chatterjee, Henzinger, and Piterman, "Generalized Parity Games", 2007.

¹⁸Bruyère, Hautem, and Randour, "Window parity games: an alternative approach toward parity games with time bounds", 2016.

¹⁹Bouyer, Markey, et al., "Average-energy games", 2018.

²⁰Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

²¹Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

Other characterization (not shown here)

Second generalized result: characterization of arena-independent finite-memory determinacy in **one-player** arenas with two properties of \sqsubseteq .

1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory

4 Stochastic games

Arena-Independent Finite-Memory Strategies

Pierre Vandenhove

Memory requirements of stochastic games

- **Pure** and memoryless strategies also suffice for many objectives: (maximize the probability of) reachability,²² parity,²³ energy,²⁴ (maximize the expected value of) discounted sum.²⁵
- For some objectives, there is a "constant" blow-up (e.g., *weak parity*; memoryless → arena-independent).

²²Condon, "The Complexity of Stochastic Games", 1992.

²³Chatterjee, Jurdzinski, and Henzinger, "Quantitative stochastic parity games", 2004.

²⁴Brázdil, Brozek, and Etessami, "One-Counter Stochastic Games", 2010.

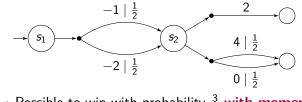
²⁵Shapley, "Stochastic Games", 1953.

Greater memory requirements in stochastic games

Objective: maximize the probability of

$$\mathsf{Disc}_{\geq 0} = \{ w = w_1 w_2 \ldots \in \mathbb{Q}^{\omega} \mid \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} w_i \ge 0 \}.$$

- Memoryless strategies suffice in **deterministic** games.
- Arena-independent FM strategies do not suffice in stochastic games.



 \rightarrow Possible to win with probability $\frac{3}{4}$ with memory.

Results about stochastic games

One-to-two-player stochastic lift²⁶

lf

- in all one-player stochastic arenas (i.e., MDPs) of P₁, P₁ has a pure optimal strategy with memory M₁,
- in all one-player stochastic arenas (i.e., MDPs) of P₂, P₂ has a pure optimal strategy with memory M₂,

then both players have a **pure** optimal strategy in all **two-player stochastic** arenas with memory $M_1 \times M_2$.

Also:

- characterization in terms of two properties of ⊑.
- equivalence between the existence of arena-independent *subgame perfect* strategies and of arena-independent *optimal* strategies.

²⁶Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

Summary

Key observation: arena-independent memory often suffices.

Contributions

- One-to-two-player lift in deterministic and stochastic games.
- Characterization of arena-independent finite-memory determinacy.

Ongoing work

- Understand the arena-**dependent** case.
- Similar one-to-two-player lift for **infinite** arenas.

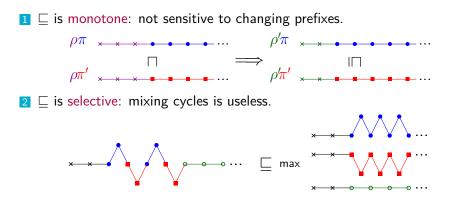
Thanks! Questions?

Appendix

Gimbert and Zielonka's characterization²⁷

Let \sqsubseteq be a preference relation.

 \mathcal{P}_1 admits optimal memoryless strategies in one-player arenas $\mbox{if and only if}$



²⁷Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

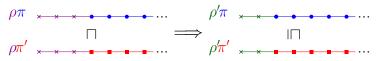
Arena-Independent Finite-Memory Strategies

Pierre Vandenhove

Characterization of arena-independent finite memory

Let \sqsubseteq . Let $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$.

- We classify prefixes according to M: for ρ, ρ' ∈ C*, ρ ~_M ρ' iff α_{upd}(m_{init}, ρ) = α_{upd}(m_{init}, ρ').
- From monotone to \mathcal{M} -monotone: same with $\rho \sim_{\mathcal{M}} \rho'$.



• Similar extension of selective to *M*-selective by classifying cycles in the memory structure.

Proposition

 \mathcal{P}_1 has optimal strategies with memory \mathcal{M} in all **one-player** arenas **if and only if** \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective.

Formal definitions of \mathcal{M} -monotony and \mathcal{M} -selectivity

Definition (\mathcal{M} -monotony)

Let $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ be a memory structure. A preference relation \sqsubseteq is \mathcal{M} -monotone if for all $m \in M$, for all $K_1, K_2 \in \mathcal{R}(C)$,

$$\exists w \in \underline{L}_{m_{\text{init}},m}, \ [wK_1] \sqsubseteq [wK_2] \implies \forall w' \in \underline{L}_{m_{\text{init}},m}, \ [w'K_1] \sqsubseteq [w'K_2].$$

Definition (\mathcal{M} -selectivity)

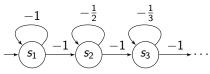
Let $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ be a memory structure. A preference relation \sqsubseteq is \mathcal{M} -selective if for all $w \in C^*$, $m = \widehat{\alpha_{\text{upd}}}(m_{\text{init}}, w)$, for all $K_1, K_2 \in \mathcal{R}(C)$ such that $K_1, K_2 \subseteq L_{m,m}$, for all $K_3 \in \mathcal{R}(C)$,

$$[w(K_1 \cup K_2)^*K_3] \sqsubseteq [wK_1^*] \cup [wK_2^*] \cup [wK_3].$$

Greater memory requirements in infinite arenas

Objective: get the largest mean payoff.

- Memoryless strategies suffice in finite (even stochastic) arenas.
- Infinite memory is required in one-player deterministic infinite arenas.²⁸



 \rightsquigarrow Possible to get 0 at the limit with infinite memory.

²⁸Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.