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Outline

Strategy synthesis for zero-sum turn-based games on infinite graphs
Design optimal controllers for systems interacting with an antagonistic
environment.

Interest in “simple” strategies
Finite-memory determinacy: when do finite-memory strategies suffice?

Inspiration
Results about memoryless determinacy.1

1Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Zero-sum turn-based games on graphs
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• Two-player arenas: S1 (©, for P1) and S2 (�, for P2), edges E .
• Set C of colors. Edges are colored.
• Objectives given by a set W ⊆ Cω. Zero-sum.
• A strategy for Pi is a function σ : E ∗ → E .
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Memoryless determinacy

Question
Given an objective, do “simple” strategies suffice to play optimally in all
arenas?

A strategy σ of Pi is memoryless if it is a function��ZZE ∗ Si → E .
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E.g., for reachability, memoryless strategies suffice to play optimally.
Also suffice for safety, Büchi, parity. . .
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Memoryless determinacy

Good understanding of memoryless determinacy in finite arenas
Sufficient conditions and characterizations of memoryless determinacy
• for one player,2, 3, 4, 5

• for both players.6, 7, 8

What about infinite arenas?

2Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006.
3Gimbert, “Pure Stationary Optimal Strategies in Markov Decision Processes”, 2007.
4Bianco et al., “Exploring the boundary of half-positionality”, 2011.
5Gimbert and Kelmendi, “Submixing and Shift-Invariant Stochastic Games”, 2014.
6Gimbert and Zielonka, “When Can You Play Positionally?”, 2004.
7Aminof and Rubin, “First-cycle games”, 2017.
8Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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What about infinite arenas?

Motivations

1 Links between the strategy complexity in finite and infinite arenas?

2 Similar sufficient conditions/characterizations for infinite arenas?
 Classical proof technique for finite arenas (induction on number of
edges) is not suited to infinite arenas.
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Greater memory requirements in infinite arenas

Colors C = Q, objective W = “get a mean payoff ≥ 0”.
• Memoryless strategies sufficient in finite arenas.9

• Infinite memory required in (even one-player) infinite arenas.10

s1 s2 s3 · · ·−1 −1 −1

−1 − 1
2 − 1

3

 Possible to get 0 at the limit with infinite memory:
loop increasingly many times in states sn.

9Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
10Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.
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Infinite arenas, memoryless strategies

Let W ⊆ Cω be a prefix-independent objective.

Characterization of memoryless determinacy (infinite arenas)11

If memoryless strategies suffice to play optimally for both players in all
infinite arenas, then W is a parity condition.

Parity condition: there exists p : C → {0, . . . , n} such that

w = c1c2 . . . ∈W ⇐⇒ lim sup
i

p(ci) is even.

Characterization since parity objectives are memoryless-determined (in
arenas of any cardinality).12

11Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
12Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Two “limits” of the result

1 What about strategies with finite memory?
 More and more prevalent in the literature.

2 Some simple memoryless-determined objectives are not
prefix-independent (e.g., reachability).
 This characterization misses memoryless-determined objectives.
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Finite memory

Finite-memory strategy ≈ memory structure + next-action function.

Memory structure
Memory structure (M,minit, αupd): finite set of states M, initial state minit,
update function αupd : M × C → M.

Ex. to remember whether a or b was last played (not yet a strategy!):

a b

a

b

m1 m2

Given an arena A = (S, S1, S2,E ): next-action function αnxt : Si ×M → E .
Memoryless strategies are based on the “trivial” memory structure.
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Finite-memory determinacy

Finite-memory determinacy
An objective W is finite-memory-determined if there exists a finite
memory structureM that suffices to play optimally for both players in all
arenas A.

Remark
Usually, the definition inverts the order of the quantifiers. The order has a
big impact in finite arenas,13 but not in infinite arenas for our memory
model.

13Bouyer, Le Roux, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2020.
Strategic Characterization of ω-Regular Languages Pierre Vandenhove



Tool to get rid of prefix-independence: right congruence

Let L be a language of finite words on alphabet C .

Right congruence
For x , y ∈ C∗, x ∼L y if for all z ∈ C∗, xz ∈ L⇔ yz ∈ L.

Myhill-Nerode theorem14

L is regular if and only if ∼L has finitely many equivalence classes.
The equivalence classes of ∼L correspond to the states of the minimal
DFA for L.

14Nerode, “Linear Automaton Transformations”, 1958.
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Tool to get rid of prefix-independence: right congruence

Let W be a language of infinite words (= an objective) on alphabet C .

Right congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇔ yz ∈W .

Links with ω-regularity?

• If W is ω-regular, then ∼W has finitely many equivalence classes.
In this case, there is still a DFAM∼ “prefix-classifier” associated
with ∼W .
• The reciprocal is not true.

W is prefix-independent if and only if ∼W has only one equivalence class.
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Insight for prefix-independence

Let W be an objective.

Replacement for prefix-independence
If a finite memory structure suffices to play optimally in infinite arenas for
both players, then ∼W has finitely many equivalence classes.

Intuition: even without prefix-independence (⇔ ∼W has one equivalence
class), we have a strong property on prefixes (∼W has finitely many
equivalence classes).
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Four examples

Objective Prefix-classifierM∼ Memory

Parity objective C C 7→ {0, . . . , n}

C = Q,

W = MP≥0 C Infinite

C = {a, b},

W = b∗ab∗aCω

b, 1 b, 1

C , 2
a, 1 a, 1

C

C = {a, b},

W = C∗(ab)ω C b, 1 a, 1
a, 0

b, 0
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Main result

Let W ⊆ Cω be an objective.

Theorem
If a finite memory structureM suffices to play optimally in (one-player)
infinite arenas for both players,
then W is recognized by a parity automaton (M∼ ⊗M, p).

 ifM∼ ⊗M = (M,minit, αupd),

p : M × C → {0, . . . , n}.

Generalizes [CN06]15 (whereM∼ =M = “trivial memory structure”).

15Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Corollaries

Let W ⊆ Cω be an objective.

Characterization
W is finite-memory-determined if and only if W is ω-regular.

One-to-two-player FM lift (infinite arenas)
If W is finite-memory-determined in one-player infinite arenas,
then W is finite-memory-determined in two-player infinite arenas.

Proof: W is finite-memory-determined in one-player arenas.
=⇒ W is recognized by a deterministic parity automaton (ω-regular).
=⇒16 this parity automaton (as a memory) suffices in two-player arenas.
=⇒ this parity automaton (as a memory) suffices in one-player arenas.

16Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Summary

Contributions
• Strategic characterization of ω-regular languages, generalizing

[CN06].17

• New one-to-two-player lift for zero-sum games on infinite graphs.

Future work
• Other classes of arenas (e.g., finitely branching)?
• Stochastic infinite arenas?

Thanks! Questions?
17Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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