Characterizing ω -Regular Languages through Strategy Complexity of Games on Infinite Graphs

Pierre Vandenhove^{1,2}

Joint work with Patricia Bouyer¹ and Mickael Randour²

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium

November 17, 2021 - Journées du GT Vérif

Outline

Strategy synthesis for zero-sum turn-based games on infinite graphs

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

Interest in "simple" strategies

Finite-memory determinacy: when do finite-memory strategies suffice?

Inspiration

Results about memoryless determinacy.¹

Strategic Characterization of ω -Regular Languages

¹Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Zero-sum turn-based games on graphs

- Two-player arenas: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\square , for \mathcal{P}_2), edges E.
- Set C of **colors**. **Edges** are colored.
- **Objectives** given by a set $W \subseteq C^{\omega}$. **Zero-sum**.
- A strategy for \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Memoryless determinacy

Question

Given an objective, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.

E.g., for reachability, **memoryless** strategies suffice to play optimally. Also suffice for safety, Büchi, parity...

Memoryless determinacy

Good understanding of memoryless determinacy in finite arenas

Sufficient conditions and characterizations of memoryless determinacy

- for **one** player,^{2,3,4,5}
- for **both** players.^{6,7,8}

What about **infinite** arenas?

Strategic Characterization of $\omega\text{-Regular}$ Languages

²Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

³Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

⁴Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁵Gimbert and Kelmendi, "Submixing and Shift-Invariant Stochastic Games", 2014.

⁶Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

⁷Aminof and Rubin, "First-cycle games", 2017.

⁸Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

What about **infinite arenas**?

Motivations

1 Links between the **strategy complexity** in finite and **infinite** arenas?

Similar sufficient conditions/characterizations for infinite arenas? ~> Classical proof technique for finite arenas (induction on number of edges) is not suited to infinite arenas.

Greater memory requirements in infinite arenas

Colors $C = \mathbb{Q}$, objective W = "get a mean payoff ≥ 0 ".

- Memoryless strategies sufficient in finite arenas.⁹
- Infinite memory required in (even one-player) infinite arenas.¹⁰

 \rightsquigarrow Possible to get 0 at the limit with infinite memory: loop increasingly many times in states s_n .

Strategic Characterization of ω -Regular Languages

⁹Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

¹⁰Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

Infinite arenas, memoryless strategies

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of **memoryless** determinacy (infinite arenas)¹¹

If **memoryless strategies** suffice to play optimally for both players in all **infinite arenas**, then W is a **parity condition**.

Parity condition: there exists $p: C \rightarrow \{0, \ldots, n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

Characterization since parity objectives are memoryless-determined (in arenas of any cardinality).¹²

Strategic Characterization of ω -Regular Languages

 $^{^{11}\}mbox{Colcombet}$ and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

¹²Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

- What about strategies with finite memory? → More and more prevalent in the literature.

Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $(M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function α_{upd} : $M \times C \rightarrow M$.

Ex. to remember whether a or b was last played (not yet a strategy!):

Given an arena $\mathcal{A} = (S, S_1, S_2, E)$: *next-action function* $\alpha_{nxt} \colon S_i \times M \to E$.

Memoryless strategies are based on the "trivial" memory structure.

Finite-memory determinacy

Finite-memory determinacy

An objective W is **finite-memory-determined** if **there exists a finite memory structure** \mathcal{M} that suffices to play optimally for both players in all arenas \mathcal{A} .

Remark

Usually, the definition inverts the order of the quantifiers. The order has a big impact in **finite arenas**, ¹³ but not in **infinite arenas** for our memory model.

¹³Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

Tool to get rid of prefix-independence: right congruence

Let L be a language of **finite** words on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_L y$ if for all $z \in C^*$, $xz \in L \Leftrightarrow yz \in L$.

Myhill-Nerode theorem¹⁴

L is regular if and only if \sim_L has finitely many equivalence classes. The equivalence classes of \sim_L correspond to the states of the minimal DFA for *L*.

¹⁴Nerode, "Linear Automaton Transformations", 1958.

Tool to get rid of prefix-independence: right congruence

Let W be a language of **infinite** words (= an objective) on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \Leftrightarrow yz \in W$.

Links with ω -regularity?

- If W is ω-regular, then ~_W has finitely many equivalence classes. In this case, there is still a DFA M_∼ "prefix-classifier" associated with ~_W.
- The reciprocal is not true.

W is prefix-independent if and only if \sim_W has only one equivalence class.

Insight for prefix-independence

Let W be an objective.

Replacement for prefix-independence

If a **finite memory structure** suffices to play optimally in infinite arenas for both players, then \sim_W has finitely many equivalence classes.

Intuition: even without prefix-independence ($\Leftrightarrow \sim_W$ has one equivalence class), we have a **strong property on prefixes** (\sim_W has finitely many equivalence classes).

Four examples

Objective	Prefix-classifier \mathcal{M}_{\sim}	Memory
Parity objective	$\rightarrow \bigcirc C$	$\rightarrow \bigcirc C \mapsto \{0,\ldots,n\}$
$C=\mathbb{Q}$, $W=MP^{\geq 0}$	→<>>> C	Infinite
$\mathcal{C}=\{a,b\}$, $W=b^*ab^*aC^\omega$	$\xrightarrow{b,1} \xrightarrow{b,1} \xrightarrow{a,1} \xrightarrow{c,2} C,2$	→<>>> C
$C = \{a, b\},$ $W = C^* (ab)^\omega$	→<>>> C	b, 1 $b, 0$ $b, 0$ $a, 1$

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a finite memory structure \mathcal{M} suffices to play optimally in **(one-player)** infinite arenas for both players, **then** W is **recognized by a parity automaton** $(\mathcal{M}_{\sim} \otimes \mathcal{M}, p)$.

$$\rightsquigarrow$$
 if $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}}),$
 $p \colon M \times C \to \{0, \dots, n\}.$

Generalizes [CN06]¹⁵ (where $\mathcal{M}_{\sim} = \mathcal{M} =$ "trivial memory structure").

¹⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Corollaries

Let $W \subseteq C^{\omega}$ be an objective.

Characterization

W is finite-memory-determined if and only if W is ω -regular.

One-to-two-player FM lift (infinite arenas)

If W is finite-memory-determined in **one-player** infinite arenas, then W is finite-memory-determined in **two-player** infinite arenas.

Proof: *W* is finite-memory-determined in **one-player** arenas. \Rightarrow *W* is recognized by a deterministic parity automaton (ω -regular). \Rightarrow^{16} this parity automaton (as a memory) suffices in **two-player** arenas. \Rightarrow this parity automaton (as a memory) suffices in **one-player** arenas.

¹⁶Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Summary

Contributions

- **Strategic characterization** of ω-regular languages, generalizing [CN06].¹⁷
- New one-to-two-player lift for zero-sum games on infinite graphs.

Future work

- Other classes of arenas (e.g., finitely branching)?
- Stochastic infinite arenas?

Thanks! Questions?

Strategic Characterization of $\omega\text{-Regular}$ Languages

¹⁷Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.