Reachability in Stochastic Hybrid Systems [Ongoing Work]

Patricia Bouver¹ Thomas Brihave² Mickael Randour^{2,3} Cédric Rivière² **Pierre Vandenhove**^{1,2,3}

¹LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France

²UMONS – Université de Mons, Mons, Belgium

³F R S - FNRS

September 19, 2019 – Highlights 2019, Warsaw

Outline

Goal

Identify a decidable class for reachability in stochastic hybrid systems.

Method

Follow an approach that has been successful for infinite Markov chains.

Dutline	Stochastic systems	(Stochastic) hybrid systems	Conclusion
L			

Reachability in infinite Markov chains

Let $\ensuremath{\mathcal{M}}$ be a countable Markov chain.

Let $B \subseteq S$ be a set of target states, $s \in S$ be an initial state.

Goal

Compute (or approximate)
$$\mathsf{Prob}^\mathcal{M}_s(\Diamond B).$$

We set

$$\widetilde{{m B}}=\{s\in S\mid {
m Prob}_s^{\mathcal M}(\Diamond B)=0\}$$
 .

Reachability in Stochastic Hybrid Systems

How to approximate the probability of reaching B?

Approximation procedure¹

We define for $n \in \mathbb{N}$

$$p_n^{\operatorname{Yes}} = \operatorname{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} B),$$

$$\mathfrak{p}_n^{\mathsf{No}} = \mathsf{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n}\,\widetilde{B})$$
.

Given a precision $\epsilon > 0$, we compute $p_1^{\text{Yes}} \le \text{Prob}_s^{\mathcal{M}}(\Diamond B) \le 1 - p_1^{\text{No}}$ $p_2^{\text{Yes}} \le \text{Prob}_s^{\mathcal{M}}(\Diamond B) \le 1 - p_2^{\text{No}}$ \vdots Until $(1 - p_n^{\text{No}}) - p_n^{\text{Yes}} < \epsilon$.

Always terminates?

¹lyer and Narasimha, "Probabilistic Lossy Channel Systems", 1997.

Reachability in Stochastic Hybrid Systems

Bouyer, Brihaye, Randour, Rivière, Vandenhove

Counterexample: diverging random walk

The procedure does not terminate for this infinite Markov chain:

Initial state: s_1 , target state: $B = \{s_0\} \Longrightarrow \widetilde{B} = \emptyset$. For all n, • $p_n^{\text{Yes}} = \text{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} B) \leq \text{Prob}_{s_1}^{\mathcal{M}}(\Diamond B) = \frac{1}{2}$. • $p_n^{\text{No}} = \text{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} \widetilde{B}) = 0$. \rightsquigarrow For all n, $(1 - p_n^{\text{No}}) - p_n^{\text{Yes}} \geq \frac{1}{2} \dots$

Outline	Stochastic systems	(Stochastic) hybrid systems	Conclusio
2			

Decisiveness

Let $\mathcal{M} = (S, P)$ be a countable Markov chain, $B \subseteq S$.

Decisiveness²

 \mathcal{M} is **decisive** w.r.t. $B \subseteq S$ if for all $s \in S$, $\operatorname{Prob}_{s}^{\mathcal{M}}(\Diamond B \lor \Diamond \widetilde{B}) = 1$.

Theorem²

If \mathcal{M} is decisive w.r.t. B, then the approximation procedure is correct and terminates.

Decisiveness was extended to more general stochastic systems.³

Goal

Identify classes of decisive stochastic hybrid systems.

²Abdulla, Ben Henda, and Mayr, "Decisive Markov Chains", 2007.

³Bertrand et al., "When are stochastic transition systems tameable?", 2018. Reachability in Stochastic Hybrid Systems Bouyer, Brihaye, Randour, Rivière, Vandenhove

Stochastic systems

(Stochastic) hybrid systems

Conclusion

Hybrid systems ("discrete + continuous")

- (*L*, *E*) is a finite graph.
- A number *n* of continuous variables
 → states of the system are in *L* × ℝⁿ: uncountable state space!
- A continuous dynamics in each discrete location.
- A guard for each edge.
- A reset for each edge.

line	Stochastic systems	(Stochastic) hybrid systems	Conclusion

We replace the nondeterminism of hybrid systems with probability distributions on the:

- waiting time from a given state;
- edge choice;
- choice of a reset value.

~ Stochastic hybrid systems (SHSs)

0	u	t	I	ir	1	е

Undecidability

Reachability (almost-sure and approximation) is undecidable for SHSs.

Goal

Find a subclass of SHSs for which reachability is decidable.

Making reachability decidable with strong resets

Strong reset⁴ = reset that does not depend on the value of the variables. Example: x follows a uniform dist. in [x - 1, x + 1] is not a strong reset. x follows a uniform distribution in [-1, 1] is a strong reset.

Main result

SHSs with one strong reset per cycle are

- decisive w.r.t. any set of states;
- have a finite abstraction!

⁴Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.

Reachability in Stochastic Hybrid Systems

Bouyer, Brihaye, Randour, Rivière, Vandenhove

Conclusion: decidable classes of hybrid systems

Hybrid systems: existence of a finite bisimulation

- Timed automata;⁵
- Initialized rectangular hybrid systems;⁶
- O-minimal hybrid systems.⁷

Stochastic hybrid systems: decisiveness and finite abstraction

- Single-clock stochastic timed automata;⁸
- Reactive stochastic timed automata;⁸
- Strongly-reset stochastic hybrid systems.

→→ Reachability is **decidable** under effectiveness assumptions.

⁵Alur and Dill, "Automata For Modeling Real-Time Systems", 1990.
⁶Henzinger et al., "What's Decidable about Hybrid Automata?", 1998.
⁷Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.
⁸Bertrand et al., "When are stochastic transition systems tameable?", 2018.

Reachability in Stochastic Hybrid Systems

Bouyer, Brihaye, Randour, Rivière, Vandenhove