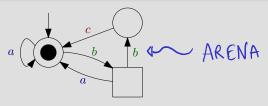
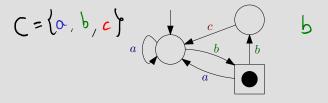
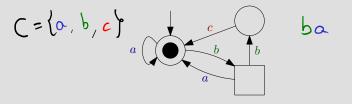
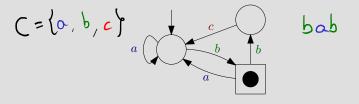
Arena-Independent Finite-Memory Determinacy [Ongoing work]

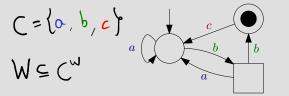

Patricia Bouyer¹, Mickael Randour², Pierre Vandenhove^{1,2}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium

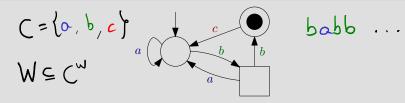

September 15, 2021 - Highlights 2021


Zero-sum turn-based games on graphs

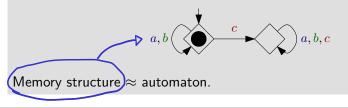

Zero-sum turn-based games on graphs


Zero-sum turn-based games on graphs

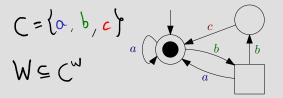
Zero-sum turn-based games on graphs



Zero-sum turn-based games on graphs

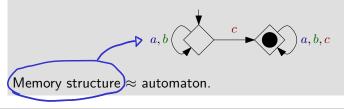


Zero-sum turn-based games on graphs



Strategy complexity

Given an objective, what information to remember about the past?


Zero-sum turn-based games on graphs

Strategy complexity

Given an objective, what information to remember about the past?

Arena-independent finite-memory determinacy

Arena-independent finite-memory determinacy: objectives for which a unique finite memory structure suffices to play optimally in all arenas.

Arena-independent finite-memory determinacy

Arena-independent finite-memory determinacy: objectives for which a unique finite memory structure suffices to play optimally in all arenas.

 \rightsquigarrow good trade-off between **applicability** (e.g., all ω -regular objectives, but not only) and **good properties**...

One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to one-player memory determinacy?

Arenas $Strat.$ comp.	Memoryless	Arena-ind. FM	Mildly growing
Finite deterministic	[GZ05] ¹	[BLORV20] ²	[Koz21] ³
Finite stochastic	[GZ09] ⁴	[BORV21] ⁵	
Infinite deterministic	[CN06,Kop08] ⁶	New work	

Arena-Independent Finite-Memory Determinacy

¹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

³Kozachinskiy, "One-to-Two-Player Lifting for Mildly Growing Memory", 2021.

⁴Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

⁵Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

⁶Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006; Kopczyński, "Half-positional Determinacy of Infinite Games", 2008.

One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to one-player memory determinacy?

Arenas $\$ Strat. comp.	Memoryless	Arena-ind. FM	Mildly growing
Finite deterministic	[GZ05] ¹	[BLORV20] ²	[Koz21] ³
Finite stochastic	[GZ09] 4	[BORV21] ⁵	
Infinite deterministic	[CN06,Kop08] ⁶	² New work	

Arena-Independent Finite-Memory Determinacy

¹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

³Kozachinskiy, "One-to-Two-Player Lifting for Mildly Growing Memory", 2021.

⁴Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

⁵Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

⁶Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006; Kopczyński, "Half-positional Determinacy of Infinite Games", 2008.

Infinite arenas, memoryless strategies

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Theorem⁷

If **memoryless strategies** suffice to play optimally for both players in **one-player infinite deterministic arenas**, then W is a **parity condition**.

⁷Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Infinite arenas, memoryless strategies

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Theorem⁷

If **memoryless strategies** suffice to play optimally for both players in **one-player infinite deterministic arenas**, then W is a **parity condition**.

In other words: there exists $p: C \to \{0, \ldots, n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

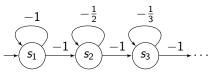
Arena-Independent Finite-Memory Determinacy

⁷Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

P. Bouyer, M. Randour, P. Vandenhove

Infinite arenas, arena-independent finite memory

Infinite arenas, arena-independent finite memory


Let
$$W \subseteq C^{\omega}$$
 be a prefix-independent objective, M be a memory structure.
Theorem using memory M
If memory M
If memory M is a parity condition.
one-player infinite deterministic arenas, then W is a parity condition.
 $ricognized$ by a parity autometer.
Corollary 1. New one-to-two-player lift.
Corollary 2. Strategic characterization of W -regular objectives.
Thanks Questions?

Appendix

Greater memory requirements in infinite arenas

Objective: get a mean payoff \geq 0.

- Memoryless strategies suffice in finite (even stochastic) arenas.
- Infinite memory is required in one-player deterministic infinite arenas.⁷

 \rightsquigarrow Possible to get 0 at the limit with infinite memory.

⁷Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.