Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer¹, Antonio Casares², Mickael Randour³, **Pierre Vandenhove**^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
²LaBRI, Université de Bordeaux, France
³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

June 29, 2022 – Highlights of Logic, Games and Automata

Zero-sum turn-based games on graphs

w = bab

Zero-sum turn-based games on graphs

w = babbc ...

Zero-sum turn-based games on graphs

Understand the **objectives** for which **simple** strategies suffice to win.

Half-positionality

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

It is **positional** if the choices only depend on the **current** vertex.

Half-positionality

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is **positional** if the choices only depend on the **current** vertex.

Half-positional objectives

In all games, if \mathcal{P}_1 can win for objective W with a strategy $\sigma \colon E^* \to E$, can \mathcal{P}_1 also win with a **positional** strategy?

Half-positionality

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is **positional** if the choices only depend on the **current** vertex.

Half-positional objectives

In all games, if \mathcal{P}_1 can win for objective W with a strategy $\sigma \colon E^* \to E$, can \mathcal{P}_1 also win with a **positional** strategy?

Existing results

- Sufficient conditions for half-positionality.^{1,2}
- Structural characterization!3

¹Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

 $^{^2\}mbox{Bianco}$ et al., "Exploring the boundary of half-positionality", 2011.

³Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

Objectives

Common class of objectives finitely representable: ω -regular objectives.

Objectives

Common class of objectives finitely representable: ω -regular objectives.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Objectives

Common class of objectives finitely representable: ω -regular objectives.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Here

Effective characterization of **half-positional** objectives recognized by **deterministic Büchi automata** (DBA).

DBA recognize a **sub**class of the ω -regular objectives.

Examples

$$C = \{a, b\}.$$

• $W = B\ddot{u}chi(a) = "seeing a infinitely often": half-positional.$

⁴Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

Examples

$$C = \{a, b\}.$$

• $W = B\ddot{u}chi(a) = "seeing a infinitely often": half-positional.^4$

• $W = B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$: **not** half-positional.

⁴Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

Examples

$$C = \{a, b\}.$$

• $W = B\ddot{u}chi(a) = "seeing a infinitely often": half-positional.^4$

• $W = B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$: **not** half-positional.

• $W = \text{B\"uchi}(a) \cup C^*aaC^{\omega}$: half-positional.

⁴Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions. No time to explain all of them:

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

• Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Being "Myhill-Nerode-like" is necessary for half-positionality.

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** graphs, then also in **infinite two-player** games!

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** graphs, then also in **infinite two-player** games!

Thanks!

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** graphs, then also in **infinite two-player** games!

Thanks!

Appendix

Relations on prefixes

Let $W \subseteq C^{\omega}$ be an objective.

Left quotient

For $u \in C^*$, $u^{-1}W = \{ w \in C^{\omega} \mid uw \in W \}$.

For $u, v \in C^*$,

- $u \sim v$ if $u^{-1}W = v^{-1}W$ (\approx Myhill-Nerode relation),
- $u \leq v$ if $u^{-1}W \subseteq v^{-1}W$.

Condition 1: \leq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq is total.

Condition 1: \leq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \leq is total.

For $W = (aa + bb)C^{\omega}$, words a and b are not comparable for \leq .

Condition 1: \leq is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \prec is total.

Büchi(a) \cup C^*aaC^{ω} has a total prefix preorder.

Condition 2: progress-consistency

Let $W \subseteq C^{\omega}$ be an objective.

Condition 2

Objective W is progress-consistent if

for all $u, v \in C^*$, $u \prec uv$ implies $uv^{\omega} \in W$.

 C^*aaC^{ω} is **not** progress-consistent: $b \prec b(ba)$ but $b(ba)^{\omega} \notin W$.

Büchi(a) \cup C^*aaC^{ω} is progress-consistent (here, $b(ba)^{\omega} \in W$).

Condition 3: one state per class

Let $W\subseteq \mathcal{C}^\omega$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim .

Condition 3: one state per class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim .

 $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$ is **not** Myhill-Nerode-like. **One** equivalence class, but needs at least **two** states.

$$a q_a q_b$$

Condition 3: one state per class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim .

Büchi(a) \cup C^*aaC^{ω} is Myhill-Nerode-like (three classes, three states).

Theorem

An objective W recognized by a DBA is half-positional if and only if

- ≤_W is total,
- W is progress-consistent, and
- W is Myhill-Nerode-like.

All three conditions are easy to decide.

Greater memory requirements in infinite arenas in general

Objective: get a mean payoff ≥ 0 .

- Memoryless strategies suffice in finite (even stochastic) arenas.
- Infinite memory is required in one-player deterministic infinite arenas.⁵

→ Possible to get 0 at the limit with infinite memory.

⁵Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.