Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer ${ }^{1}$, Antonio Casares ${ }^{2}$, Mickael Randour ${ }^{3}$, Pierre Vandenhove ${ }^{1,3}$

${ }^{1}$ Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
${ }^{2}$ LaBRI, Université de Bordeaux, France
${ }^{3}$ F.R.S.-FNRS \& UMONS - Université de Mons, Belgium

June 29, 2022 - Highlights of Logic, Games and Automata

Games on graphs

Zero-sum turn-based games on graphs

Games on graphs

Zero-sum turn-based games on graphs

Games on graphs

Zero-sum turn-based games on graphs

Games on graphs

Zero-sum turn-based games on graphs

Games on graphs

Zero-sum turn-based games on graphs

$w=b a b$

Games on graphs

Zero-sum turn-based games on graphs

Games on graphs

Zero-sum turn-based games on graphs

$w=b a b b c \ldots$

Games on graphs

Zero-sum turn-based games on graphs
$P_{1}: O$
$P_{2}: \square$
Objectives: $W \leq c^{\omega}$

$$
\begin{aligned}
& w=b a b b c \ldots \\
& C=\{a, b, c\}
\end{aligned}
$$

Games on graphs

Zero-sum turn-based games on graphs

Motivation

$$
\begin{aligned}
w & =b a b b c \ldots \\
C & =\{a, b, c\}
\end{aligned}
$$

Understand the objectives for which simple strategies suffice to win.

Half-positionality

Strategies

A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$.
It is positional if the choices only depend on the current vertex.

Half-positionality

Strategies

A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$.
It is positional if the choices only depend on the current vertex.

Half-positional objectives

In all games, if \mathcal{P}_{1} can win for objective W with a strategy $\sigma: E^{*} \rightarrow E$, can \mathcal{P}_{1} also win with a positional strategy?

Half-positionality

Strategies

A strategy of \mathcal{P}_{1} is a function $\sigma: E^{*} \rightarrow E$. It is positional if the choices only depend on the current vertex.

Half-positional objectives

In all games, if \mathcal{P}_{1} can win for objective W with a strategy $\sigma: E^{*} \rightarrow E$, can \mathcal{P}_{1} also win with a positional strategy?

Existing results

- Sufficient conditions for half-positionality. ${ }^{1,2}$
- Structural characterization! ${ }^{3}$

[^0]
Objectives

Common class of objectives finitely representable: ω-regular objectives.

Objectives

Common class of objectives finitely representable: ω-regular objectives.

Open problem

Half-positionality not completely understood for ω-regular objectives!

Objectives

Common class of objectives finitely representable: ω-regular objectives.

Open problem

Half-positionality not completely understood for ω-regular objectives!

Here

Effective characterization of half-positional objectives recognized by deterministic Büchi automata (DBA).

DBA recognize a subclass of the ω-regular objectives.

Examples

"Büchi transitions"

$C=\{a, b\}$.

- $W=$ Büchi $(a)=$ "seeing a infinitely often": half-positional. ${ }^{4}$

[^1]
Examples

$C=\{a, b\}$.

- $W=\operatorname{Büchi}(a)=$ "seeing a infinitely often": half-positional. ${ }^{4}$

- $W=\operatorname{Büchi}(a) \cap \operatorname{Büchi}(b)$: not half-positional.

${ }^{4}$ Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

Examples

"Büchi transitions"

$C=\{a, b\}$.

- $W=$ Büchi $(a)=$ "seeing a infinitely often": half-positional. ${ }^{4}$

- $W=\operatorname{Büchi}(a) \cap \operatorname{Büchi}(b)$: not half-positional.

- $W=\operatorname{Büchi}(a) \cup C^{*} a a C^{\omega}$: half-positional.

[^2]
Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three conditions.

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three conditions. \sim No kime to explain all of them :-)

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three conditions.

Intuition for one condition: what distinguishes these two DBA?

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Characterization

Let W be recognized by a DBA \mathcal{B}.

Main result

Characterization of half-positionality of W with a conjunction of three conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Being "Myhill-Nerode-like" is necessary for half-positionality.

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B}.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B}.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over finite one-player graphs, then also in infinite two-player games!

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B}.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

One-to-two-player, finite-to-infinite lift
If W is half-positional over finite one-player graphs, then also in infinite two-player games!

Thanks!

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B}.

Polynomial-time algorithm

Half-positionality of W can be decided in $\mathcal{O}\left(|\mathcal{B}|^{4}\right)$ time.

One-to-two-player, finite-to-infinite lift
If W is half-positional over finite one-player graphs, then also in infinite two-player games!

Thanks!

Appendix

Relations on prefixes

Let $W \subseteq C^{\omega}$ be an objective.

Left quotient

For $u \in C^{*}, u^{-1} W=\left\{w \in C^{\omega} \mid u w \in W\right\}$.
For $u, v \in C^{*}$,

- $u \sim v$ if $u^{-1} W=v^{-1} W$ (\approx Myhill-Nerode relation),
- $u \preceq v$ if $u^{-1} W \subseteq v^{-1} W$.

Condition $1: \preceq$ is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \preceq is total.

Condition $1: \preceq$ is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \preceq is total.

For $W=(a a+b b) C^{\omega}$, words a and b are not comparable for \preceq.

Condition $1: \preceq$ is total

Let $W \subseteq C^{\omega}$ be an objective.

Condition 1

Prefix preorder \preceq is total.

Büchi(a) $\cup C^{*} a a C^{\omega}$ has a total prefix preorder.

Condition 2: progress-consistency

Let $W \subseteq C^{\omega}$ be an objective.

Condition 2

Objective W is progress-consistent if

$$
\text { for all } u, v \in C^{*}, u \prec u v \text { implies } u v^{\omega} \in W \text {. }
$$

$C^{*} a a C^{\omega}$ is not progress-consistent: $b \prec b(b a)$ but $b(b a)^{\omega} \notin W$.

Büchi(a) $\cup C^{*} a a C^{\omega}$ is progressconsistent (here, $b(b a)^{\omega} \in W$).

Condition 3: one state per class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim.

Condition 3: one state per class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim.

Büchi(a) \cap Büchi(b) is not Myhill-Nerode-like. One equivalence class, but needs at least two states.

Condition 3: one state per class

Let $W \subseteq C^{\omega}$ be an objective recognized by a DBA.

Condition 3

Objective W is Myhill-Nerode-like if it is recognized by a DBA with one state per equivalence class for \sim.

Büchi $(a) \cup C^{*} a a C^{\omega}$ is Myhill-Nerode-like (three classes, three states).

Characterization

Theorem

An objective W recognized by a DBA is half-positional if and only if

- $\preceq w$ is total,
- W is progress-consistent, and
- W is Myhill-Nerode-like.

All three conditions are easy to decide.

Greater memory requirements in infinite arenas in general

Objective: get a mean payoff ≥ 0.

- Memoryless strategies suffice in finite (even stochastic) arenas.
- Infinite memory is required in one-player deterministic infinite arenas. ${ }^{5}$

\rightsquigarrow Possible to get 0 at the limit with infinite memory.
${ }^{5}$ Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

[^0]: ${ }^{1}$ Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.
 ${ }^{2}$ Bianco et al., "Exploring the boundary of half-positionality", 2011.
 ${ }^{3}$ Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

[^1]: ${ }^{4}$ Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

[^2]: ${ }^{4}$ Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

