How to Play Optimally for Regular Objectives?

Patricia Bouyer¹, Nathanaël Fijalkow², Mickael Randour³, **Pierre Vandenhove**^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
²CNRS, LaBRI and Université de Bordeaux, France & University of Warsaw, Poland
³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

July 25, 2023 - Highlights'23

Outline

Synthesis problem

Synthesizing **controllers** for **reactive systems** with an **objective**. Systems and their environment modeled with **zero-sum games**.

How to play?

Given an objective, what are the **optimal controllers**? What are the **smallest** ones?

Results

Characterization of finite-state controllers for *regular objectives*; **computational complexity** of finding small ones.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V, V_1, V_2, E)$.
- Two players \mathcal{P}_1 () and \mathcal{P}_2 ()

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

3 / 11

How to play?

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V, V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V, V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V, V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V, V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V, V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babbc ... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a **finite memory structure** with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a **finite memory structure** with two states.

In this game, \mathcal{P}_1 only needs to know whether *a* or *b* was seen.

Here, can be tracked with a finite memory structure with two states.

Regular objectives

This previous objective was a *regular reachability objective*.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set $C^{\omega} \setminus LC^{\omega}$.
- A player wants to **realize** a word in *L*, the other wants to **prevent** it.
- Expressible as standard deterministic finite automata.

Precise quest

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for **regular objectives** in all arenas. Compute **minimal** ones.

Ideas

- A **DFA recognizing the regular language** *L*, seen as a memory structure, always suffices for both players...
- ... but minimal memory structures can be much smaller!

Results (not detailed here)

Decidable characterization of **sufficient memory structures** for each kind of objectives.

Automata-theoretic reformulation

 \rightsquigarrow Reformulation of " ${\cal M}$ suffices for a regular safety objective" into a "nice" covering of the automaton states.

Computational complexity: safety

Decision problems

Input: Automaton \mathcal{D} inducing the regular **safety**/**reachability** objective W and $k \in \mathbb{N}$. **Question**: \exists memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Theorem

These problems are NP-complete.

Implementation

Algorithms¹ that find minimal memory structures for regular objectives.

¹https://github.com/pvdhove/regularMemoryRequirements

Conclusion

Summary

- Characterization of the memory structures for regular objectives.
- NP-completeness of finding small memory structures.

Conclusion

Future work

- Minimal memory structures for all ω-regular objectives?
 - ✓ Muller conditions,^{2,3}
 - √ deterministic Büchi automata (partially),⁴
 - ✓ regular objectives.
- Memory model only observes colors... but observing edges may need fewer memory states. Understood for safety,⁵ but not for reachability.

Thanks!

²Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

 $^{^3 {\}rm Casares},$ "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

⁴Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2022.

⁵Colcombet, Fijalkow, and Horn, "Playing Safe", 2014.

How to Play Optimally for Regular Objectives?

P. Bouyer, N. Fijalkow, M. Randour, P. Vandenhove