How to Play Optimally for Regular Objectives?

Patricia Bouyer¹, Nathanaël Fijalkow², Mickael Randour³, Pierre Vandenhove^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
²CNRS, LaBRI and Université de Bordeaux, France & University of Warsaw, Poland
³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

July 11, 2023 - ICALP'23

Outline

Synthesis problem

Synthesizing **controllers** for **reactive systems** with an **objective**. Systems and their environment modeled with **zero-sum games**.

How to play?

Given an objective, what are the **optimal controllers**? What are the **smallest** ones?

Results

Characterization of finite-state controllers for *regular objectives*; **computational complexity** of finding small ones.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 () and \mathcal{P}_2 ()

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\mathcal{C}^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\mathcal{C}^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\mathcal{C}^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Zero-sum turn-based games on graphs

- $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□) generate an infinite word
 w = babbc ... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

How to play?

A **strategy** of a player is a function $\sigma: E^* \to E$.

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Let $C = \{a, b\}$ and

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists i \geq 1, c_i = a \land \exists j \geq 1, c_j = b\}.$$

Finite-memory strategy

In general, a strategy $\sigma: E^* \to E$ is an **infinite** object. For synthesis, great if it has a **finite** representation:

Memory structure

Memory structure $(M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function α_{upd} : $M \times C \to M$.

Ex.: remember whether *a* has already been seen:

Given an arena $\mathcal{A} = (V_1, V_2, E)$: *next-action function* α_{nxt} : $V_i \times M \to E$.

General quest

Quest

- Given an objective, **characterize the memory structures** that suffice **in all arenas** for each player.
- From a representation of an objective, compute minimal ones.

Missing piece: regular objectives

Well-studied: *Muller conditions*,^{1,2} focusing on what is seen infinitely often. We take the **opposite** stance.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set $C^{\omega} \setminus LC^{\omega}$.
- A player wants to **realize** a word in *L*, the other wants to **prevent** it.
- Expressible as standard deterministic finite automata.
- Special cases of open and closed sets, at the first level of the Borel hierarchy.

¹Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

²Casares, "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

Precise quest

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for **regular objectives**. Compute **minimal** ones.

Ideas

- A **DFA recognizing the language** *L*, seen as a memory structure, always suffices for both players...
- ... but minimal memory structures can be much smaller!

In this talk: characterization for regular safety objectives.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

Preorder on finite words

For $x, y \in C^*$, $x \preceq_W y$ if for all $z \in C^{\omega}$, $xz \in W \Rightarrow yz \in W$.

 \rightsquigarrow y is a better situation than x.

Example: let W be the regular **safety** objective induced by this DFA.

E.g., $a \prec_W \varepsilon$, $ab \prec_W a$, *a* and *b* are incomparable for \preceq_W .

Necessary condition for the memory

Let $W \subseteq C^{\omega}$ be an objective.

Lemma

A memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ needs to **distinguish incomparable words**, i.e.,

if $x, y \in C^*$ are incomparable for \leq_W , then x and y must lead to **different memory states** of \mathcal{M} .

Why is it necessary? Example

Ex.: if a and b are incomparable, they must be distinguished in some arena.

One structure that suffices:

Characterization: safety

Let *W* be a **regular safety objective**.

Theorem

A memory structure \mathcal{M} suffices for winning strategies in all arenas if and only if \mathcal{M} distinguishes incomparable words.

Question

How to find a smallest such memory structure?

Automata-theoretic reformulation

 \rightsquigarrow Reformulation of " \mathcal{M} distinguishes incomparable prefixes" into a covering of the automaton states with chains.

Computational complexity: safety

Decision problem

MEMORYSAFE **Input**: Automaton \mathcal{D} inducing the regular **safety** objective W and $k \in \mathbb{N}$. **Question**: \exists memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Thanks to the covering reformulation (reduction from Hamiltonian cycle):

Theorem

 $\label{eq:MemorySafe} \mathrm{MemorySafe} \text{ is } \mathsf{NP}\text{-complete}.$

Same problem for regular **reachability** objectives is also NP-complete.

Regular reachability

For regular **reachability** objectives, memory structures still need to **distinguish incomparable words**.

But **not sufficient**! E.g., Regular objectives induced by this automaton:

One state suffices for safety:

Two states needed for reachability:

Characterization requires a second property (not shown here).

Implementation

Algorithms³ that find minimal memory structures for regular objectives.

³https://github.com/pvdhove/regularMemoryRequirements

How to Play Optimally for Regular Objectives?

Conclusion

Future work

- Minimal memory structures for all ω-regular objectives?
 - ✓ Muller conditions,^{4,5}
 - √ deterministic Büchi automata⁶ (partially),
 - ✓ regular objectives.
- Memory model only observes colors... but observing edges may need fewer memory states. Understood for safety,⁷ but not for reachability.

Thanks!

How to Play Optimally for Regular Objectives?

Bouyer, Fijalkow, Randour, Vandenhove

⁴Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

 $^{^5 \}text{Casares},$ "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

⁶Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2022.

⁷Colcombet, Fijalkow, and Horn, "Playing Safe", 2014.