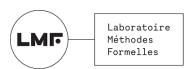
Characterizing ω -Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

Pierre Vandenhove^{1,2}

Joint work with Patricia Bouyer² and Mickael Randour¹

¹F.R.S.-FNRS & UMONS – Université de Mons, Belgium ²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

October 28, 2022 - Automata Seminar - IRIF



Outline

Synthesis problem

Synthesizing controllers for reactive systems with an objective. Systems and their environment modeled with zero-sum games.

Strategy complexity

Finite-memory determinacy: when do **finite-memory** strategies suffice? Focus on games played on **infinite** graphs.

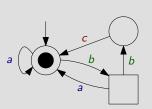
Inspiration

Results about memoryless determinacy in finite¹ and infinite² graphs.

 $^{^1\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^2\}mbox{Colcombet}$ and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

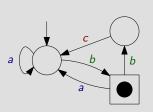
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square)

Motivation

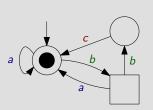
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = b

Motivation

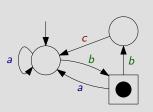
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = ba

Motivation

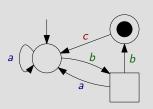
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = bab

Motivation

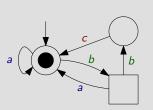
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = babb

Motivation

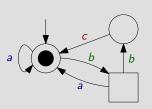
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word $w = babbc \dots \in C^{\omega}$.

Motivation

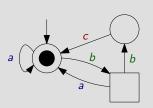
Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word $w = babbc \dots \in C^{\omega}$.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.

Motivation

Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (S_1, S_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word $w = babbc \dots \in C^{\omega}$.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- Strategy for \mathcal{P}_i : function $\sigma \colon E^* \to E$.

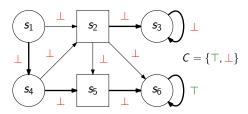
Motivation

Memoryless determinacy

Motivation

Understand the **objectives** for which **simple** strategies suffice to win.

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.



E.g., for Reach(\top), **memoryless** strategies suffice to play optimally in all arenas.

Also suffice for Büchi, parity, mean-payoff, energy... objectives.

Memoryless determinacy

Memoryless determinacy

An objective $W \subseteq C^{\omega}$ is **memoryless-determined** if memoryless strategies suffice to play optimally for both players in all (finite) arenas.

We require *uniformity*: a **single** memoryless strategy must be winning from **all** the states where that is possible.

Memoryless determinacy

Good understanding of **memoryless determinacy** in **finite** arenas:

- sufficient conditions to guarantee memoryless optimal strategies for both players.^{3,4}
- sufficient conditions to guarantee memoryless optimal strategies for one player. 5, 6, 7, 8
- characterization of the objectives admitting memoryless optimal strategies for both players.⁹

³Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

⁴Aminof and Rubin, "First-cycle games", 2017.

 $^{^5\}mbox{Kopczy}\mbox{\acute{n}ski}, \mbox{ "Half-Positional Determinacy of Infinite Games", 2006.}$

 $^{^6\}mathrm{Gimbert},\ \mathrm{``Pure\ Stationary\ Optimal\ Strategies\ in\ Markov\ Decision\ Processes''},\ 2007.$

⁷Bianco et al., "Exploring the boundary of half-positionality", 2011.

 $^{^8\}mbox{Gimbert}$ and Kelmendi, "Submixing and Shift-Invariant Stochastic Games", 2014.

 $^{^9\}mathrm{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Gimbert and Zielonka's characterization

One-to-two-player memoryless lift (**finite** arenas)¹⁰

Let $W \subseteq C^{\omega}$ be an objective. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has a memoryless optimal strategy,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has a memoryless optimal strategy, then both players have a memoryless optimal strategy in all **two-player** arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., parity and **mean-payoff** games.

Strategic Characterization of ω -Regularity Pierre Vandenhove

 $^{^{10}}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Application: memoryless determinacy of **mean payoff** ¹¹

- Colors $C = \mathbb{Q}$. Objective $W \subseteq C^{\omega}$ (for \mathcal{P}_1): obtain a **mean payoff** (average color by transition) ≥ 0 .
- In finite one-player arenas, simply reach and loop around the simple cycle with the greatest (for P₁) or smallest (for P₂) mean payoff
 → memoryless strategy.

Memoryless strategies also suffice to play optimally in **two-player** arenas!

¹¹Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What happens in infinite arenas?

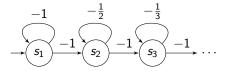
Motivations

- Links between the strategy complexity in finite and infinite arenas?
- Similar sufficient conditions/characterizations in infinite arenas?
 - → Classical proof technique for finite arenas (induction on edges) not suited to infinite arenas.

Greater memory requirements in **infinite** arenas

Colors $C = \mathbb{Q}$, objective W = "get a mean payoff ≥ 0 ".

- Memoryless strategies suffice in finite arenas.
- Infinite memory required in (even one-player) infinite arenas.¹²



Possible to get 0 at the limit with infinite memory: loop increasingly many times in states s_n .

¹²Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

Nice result in infinite arenas

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of **memoryless** determinacy (**infinite** arenas)¹³

If **memoryless strategies** suffice to play optimally for both players in **infinite arenas**, then W is a **parity condition**.

Parity condition: there exists $p: C \rightarrow \{0, ..., n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

Characterization since parity conditions are memoryless-determined. 14, 15

¹³Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

 $^{^{14}}$ Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

 $^{^{15}}$ Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Link with [GZ05]

Possible to obtain the result with a hypothesis on **one-player** arenas only! Let $W\subseteq C^\omega$ be a **prefix-independent** objective.

Characterization of memoryless determinacy (infinite arenas)

If **memoryless strategies** suffice to play optimally for both players in **one-player infinite arenas**, then W is a **parity condition**.

Proof of one-to-two-player lift:

Memoryless determinacy in **one-player** infinite arenas $\xrightarrow{[CN06]} W$ is a parity condition

⇒ memoryless determinacy in two-player infinite arenas.

Two possible extensions

- What about strategies with finite memory?
 - → More and more prevalent in the literature.
- 2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
 - → This characterization misses memoryless-determined objectives.

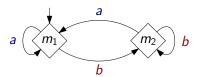
1. Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $(M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function $\alpha_{\text{upd}} : M \times C \to M$.

Ex.: remember whether a or b was last played (**not yet a strategy!**):



Given an arena $\mathcal{A}=(S_1,S_2,E)$: next-action function $\alpha_{nxt}\colon S_i\times M\to E$. Memoryless strategies use **memory structure** \longrightarrow C.

1. Finite-memory determinacy

Finite-memory determinacy

An objective W is **finite-memory-determined** if **there exists** a **finite memory structure** \mathcal{M} that suffices to play optimally for both players **in all arenas** \mathcal{A} .

Technical comment

Usually, the definition inverts the order of the quantifiers. The order has an impact in **finite arenas**, ¹⁶ but not in **infinite arenas**.

 $^{^{16}}$ Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

2. Get rid of prefix-independence – Congruence

Let L be a language of **finite** words on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_L y$ if for all $z \in C^*$, $xz \in L \Leftrightarrow yz \in L$.

Myhill-Nerode theorem¹⁷

- L is regular if and only if \sim_L has finitely many equivalence classes.
- The equivalence classes of \sim_L correspond to the states of the minimal DFA for L.

 $^{^{17}}$ Nerode, "Linear Automaton Transformations", 1958.

2. Get rid of prefix-independence – Congruence

Let W be a language of **infinite** words (= an objective) on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^\omega$, $xz \in W \Leftrightarrow yz \in W$.

Link with ω -regularity?

- If W is ω -regular, then \sim_W has finitely many equivalence classes. In this case, there is a DFA \mathcal{M}_{\sim} "prefix-classifier" associated with \sim_W .
- The reciprocal is not true.

W is prefix-independent if and only if \sim_W has only one equivalence class.

Four examples

Objective	Prefix-classifier \mathcal{M}_{\sim}	Memory
$C=\{0,\ldots,n\},$		
Parity condition	→ () ($\longrightarrow C \mapsto \{0,\ldots,n\}$
$C = \{a, b\},$ $W = b^*ab^*aC^\omega$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	→ C
$C = \{a, b\},$ $W = C^*(ab)^\omega$	→ \ \(\tau\) C	b,1 $b,0$ $a,1$
$C = \mathbb{Q},$ $W = MP^{\geq 0}$	→ <u></u> → C	No finite structure

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a finite memory structure ${\cal M}$ suffices to play optimally in **one-player** infinite arenas for both players, then

- $(\mathcal{M}_{\sim} \text{ is finite and})$
- W is recognized by a parity automaton $(\mathcal{M}_{\sim} \otimes \mathcal{M}, p)$.

$$\rightsquigarrow$$
 if $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\mathsf{init}}, \alpha_{\mathsf{upd}})$,

$$p: \mathbf{M} \times C \rightarrow \{0, \ldots, n\}.$$

Generalizes [CN06]
18
 ($\mathcal{M}_{\sim}=\mathcal{M}=$ \longrightarrow \mathcal{C}).

¹⁸Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Corollaries

Let $W \subseteq C^{\omega}$ be an objective.

One-to-two-player FM lift (infinite arenas)

If W is finite-memory-determined in **one-player** infinite arenas, then W is finite-memory-determined in **two-player** infinite arenas.

Characterization

W is **finite-memory-determined** if and only if W is ω -regular.

Proof. W is finite-memory-determined in **one-player** arenas W is recognized by a deterministic parity automaton (ω -regular) W this parity automaton (as a memory) suffices in **two-player** arenas W this parity automaton (as a memory) suffices in **one-player** arenas.

 $^{^{19} {\}sf Emerson}$ and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to one-player memory determinacy?

Arenas\Str. comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite deterministic	$[GZ05]^{20}$	[BLORV20] ²¹	[Koz21] ²²
Finite stochastic	$[GZ09]^{23}$	[BORV21] ²⁴	
Infinite determin.	P-Ind: [CN06] ²⁵	[BRV22] ²⁶	

 $^{^{20}\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^{21}} Bouyer, \ Le \ Roux, \ et \ al., \ "Games \ Where \ You \ Can \ Play \ Optimally \ with \ Arena-Independent \ Finite \ Memory", \ 2020.$

 $^{^{22}\}mbox{Kozachinskiy},$ "One-to-Two-Player Lifting for Mildly Growing Memory", 2021.

 $^{^{23}}$ Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

 $^{^{24}} Bouyer, \ Oualhadj, \ et \ al., \ "Arena-Independent \ Finite-Memory \ Determinacy \ in \ Stochastic \ Games", \ 2021.$

²⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

 $^{^{26}}$ Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2022.

Summary

Contributions

- New **one-to-two-player lift** for zero-sum games on infinite graphs.
- Strategic characterization of ω -regular languages. Strong link between representation as a DPA and memory structures.

Future work

- Only one player has FM optimal strategies?²⁷
- How to find/compute minimal memory structures for synthesis?^{28,29}

Thanks!

²⁷Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

²⁸Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

²⁹Casares, "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.