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Context: synthesis

• A reactive system with some capabilities,
• living in an (uncontrollable) environment,
• with a purpose/specification.
 Modeling through a zero-sum game.
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Outline

Strategy synthesis for zero-sum games
Design optimal controllers for systems interacting with an antagonistic
environment.

Interest in “simple” strategies
Finite-memory determinacy: when do finite-memory strategies suffice?

Inspiration
Results about memoryless strategies.1

1Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors (events) C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .
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Memoryless strategies

Question
For an objective, do simple strategies suffice to win in all arenas (when
winning is possible)?

A strategy σ of Pi is memoryless if it is a function��ZZE ∗ Vi → E .

E.g., for W = Reach(>), memoryless strategies suffice to win.

v1 v2 v3

v6v5v4 >

⊥

⊥
⊥

⊥⊥

⊥⊥

⊥

⊥

⊥

In all arenas! Memoryless strategies also suffice for many other objectives.
Characterizing ω-Regularity Through Finite-Memory Determinacy P. Bouyer, M. Randour, P. Vandenhove 5 / 16



Nice result

Let W ⊆ Cω be a prefix-independent objective
(i.e., for all w ∈ C∗, w ′ ∈ Cω, we have ww ′ ∈W ⇔ w ′ ∈W ).

Theorem [CN06]2

If memoryless strategies suffice to win for both players in all infinite
arenas, then W is a parity condition.

Parity condition: there exists p : C → {0, . . . , n} such that

w = c1c2 . . . ∈W ⇐⇒ lim sup
i

p(ci) is even.

Characterization (other implication was known).3

2Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
3Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
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Plan: Two possible extensions

1 What about strategies with finite memory?
 Already necessary for some simple and natural specifications.

2 Some simple memoryless-determined objectives are not
prefix-independent (e.g., Reach(>)).
 This characterization misses memoryless-determined objectives.
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Finite memory

Finite-memory strategy ≈ memory structure + next-action function.

Memory structure
Memory structure (M,minit, αupd): finite set of states M, initial state minit,
update function αupd : M × C → M.

Ex.: remember whether a or b was last seen:

a b

a

b

m1 m2

Given an arena A = (V1,V2,E ): next-action function Vi ×M → E .

Memoryless strategies use memory structure C .
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Example

C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}

a, c b, c

a

b

m1 m2

σ(v1,m1) = “
c−→ v2”

σ(v2,m1) = “
b−→ v2”

σ(v2,m2) = “
c−→ v1”

σ(v1,m2) = “
a−→ v2”

a b

v1 v2c

c

 Memoryless strategies do not suffice. . .
but two memory states do! There is a winning strategy σ : V1 ×M → E .
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Finite-memory determinacy

Finite-memory determinacy
Objective W is finite-memory determined if there exists a finite
memory structure M that suffices to win for both players in all arenas.

Very useful property: ifM is known and the arena is finite, only finitely
many strategies to consider.
 The winner of a game can be decided.

Remark
There are weaker definitions in whichM may depend on the arena.4

4Bouyer, Le Roux, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2020.
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Get rid of prefix-independence?

Let L be a language of finite words on alphabet C .

Myhill-Nerode congruence
For x , y ∈ C∗, x ∼L y if for all z ∈ C∗, xz ∈ L⇔ yz ∈ L.

Myhill-Nerode theorem5

L is regular if and only if ∼L has finitely many equivalence classes.
The equivalence classes of ∼L correspond to the states of the minimal
DFA for L.

What about languages of infinite words and ω-regularity?

5Nerode, “Linear Automaton Transformations”, 1958.
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Get rid of prefix-independence?

Let W be a language of infinite words (= an objective) on alphabet C .

(Almost) Myhill-Nerode congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇔ yz ∈W .

Links with ω-regularity?

• If W is ω-regular, then ∼W has finitely many equivalence classes.
 StructureMW “prefix-classifier” associated with ∼W .
• Reciprocal not true.

W is prefix-independent if and only if ∼W has only one equivalence class.
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Three examples

Objective Prefix-classifierMW Memory M

C = {0, . . . , n},

Parity condition
C C 7→ {0, . . . , n}

C = {a, b},

W = b∗ab∗aCω

b b

Ca a C

W = “a and b ∞ly often” C a b
a•
b
•
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Main result

Let W ⊆ Cω be an objective.

Theorem [Bouyer, Randour, V., 2022]6

If a finite memory structureM suffices to win in infinite arenas for both
players, then W is recognized by a parity automaton (MW ⊗M, p).

Generalizes [CN06]7 (memoryless, prefix-independent case).

Corollary
W is finite-memory determined if and only if W is ω-regular.

Direction “⇐” is a classical result.8

6Bouyer, Randour, and Vandenhove, “Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on
Infinite Graphs”, 2022.

7Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
8Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969; Rabin, “Decidability of

Second-Order Theories and Automata on Infinite Trees”, 1969.
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Summary

Contributions
• Strategic characterization of ω-regularity, generalizing [CN06].9

• Strengthens link between the representation of an objective and its
memory requirements.

Future work
• Precise memory requirements for each player given an objective?
• Similar characterizations in other game models (stochastic, concurrent,
imperfect information. . . ).

Thanks!
9Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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