Characterizing ω -Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

Patricia Bouyer¹, Mickael Randour², Pierre Vandenhove^{1,2}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium

June 20, 2023 – Doctorants STIC Saclay 2023

Context: synthesis

- A reactive system with some capabilities,
- living in an (uncontrollable) environment,
- with a purpose/**specification**.
- \rightsquigarrow Modeling through a *zero-sum game*.

Outline

Strategy synthesis for zero-sum games

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

Interest in "simple" strategies

Finite-memory determinacy: when do finite-memory strategies suffice?

Inspiration

Results about memoryless strategies.¹

Characterizing ω -Regularity Through Finite-Memory Determinacy

¹Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 → infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 → infinite word w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = babbc... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Memoryless strategies

Question

For an objective, do **simple** strategies suffice to win in all arenas (when winning is possible)?

A strategy σ of \mathcal{P}_i is **memoryless** if it is a function $\not \in V_i \to E$.

E.g., for $W = \text{Reach}(\top)$, **memoryless** strategies suffice to win.

In all arenas! Memoryless strategies also suffice for many other objectives.

Nice result

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective (i.e., for all $w \in C^*$, $w' \in C^{\omega}$, we have $ww' \in W \Leftrightarrow w' \in W$).

Theorem [CN06]²

If memoryless strategies suffice to win for both players in all infinite arenas, then W is a parity condition.

Parity condition: there exists $p: C \rightarrow \{0, \ldots, n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

Characterization (other implication was known).³

Characterizing ω -Regularity Through Finite-Memory Determinacy

 $^{^2 \}mbox{Colcombet}$ and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

³Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

P. Bouyer, M. Randour, P. Vandenhove 6 / 16

What about strategies with finite memory? ~> Already necessary for some simple and natural specifications.

2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
This observation minore memoryless determined and a standard s

→ This characterization **misses** memoryless-determined objectives.

Plan: Two possible extensions

What about strategies with finite memory? ~> Already necessary for some simple and natural specifications.

2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
 → This characterization misses memoryless-determined objectives.

Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $(M, m_{init}, \alpha_{upd})$: finite set of states M, initial state m_{init} , update function $\alpha_{upd} \colon M \times C \to M$.

Ex.: remember whether a or b was last seen:

Given an arena $\mathcal{A} = (V_1, V_2, E)$: *next-action function* $V_i \times M \to E$.

Memoryless strategies use memory structure \rightarrow

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$

Finite-memory determinacy

Finite-memory determinacy

Objective W is **finite-memory determined** if **there exists a finite memory structure** \mathcal{M} that suffices to win for both players **in all arenas**.

Very useful property: if \mathcal{M} is known and the arena is finite, only **finitely** many strategies to consider.

 \rightsquigarrow The winner of a game can be **decided**.

Remark

There are weaker definitions in which ${\cal M}$ may depend on the arena.⁴

⁴Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

Plan: Two possible extensions

- What about strategies with finite memory?
 ~> Already necessary for some simple and natural specifications.
- 2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
 This observation misses memoryless determined a

 \rightsquigarrow This characterization **misses** memoryless-determined objectives.

Get rid of prefix-independence?

Let L be a language of **finite** words on alphabet C.

Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_L y$ if for all $z \in C^*$, $xz \in L \Leftrightarrow yz \in L$.

Myhill-Nerode theorem⁵

L is regular if and only if \sim_L has finitely many equivalence classes. The equivalence classes of \sim_L correspond to the states of the minimal DFA for *L*.

What about languages of infinite words and ω -regularity?

⁵Nerode, "Linear Automaton Transformations", 1958.

Characterizing ω -Regularity Through Finite-Memory Determinacy

Get rid of prefix-independence?

Let W be a language of **infinite** words (= an objective) on alphabet C.

(Almost) Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \Leftrightarrow yz \in W$.

Links with ω -regularity?

- If W is ω -regular, then \sim_W has finitely many equivalence classes. \rightsquigarrow Structure \mathcal{M}_W "prefix-classifier" associated with \sim_W .
- Reciprocal not true.

W is **prefix-independent** if and only if \sim_W has only one equivalence class.

Three examples

Objective	$\textbf{Prefix-classifier}~\mathcal{M}_W$	Memory \mathcal{M}
$C=\{0,\ldots,n\},$		
Parity condition	→ _) t	\rightarrow $U \mapsto \{0, \dots, n\}$
${\cal C}=\{{\sf a},{\sf b}\},$ ${\cal W}={\sf b}^*{\sf a}{\sf b}^*{\sf a}{\sf C}^\omega$	$\xrightarrow{b} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} C$	$\rightarrow \bigcirc C$
$W=$ "a and $b \infty$ ly often"	→<>>> C	a b b

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem [Bouyer, Randour, V., 2022]⁶

If a finite memory structure \mathcal{M} suffices to win in infinite arenas for both players, then W is recognized by a parity automaton $(\mathcal{M}_W \otimes \mathcal{M}, p)$.

Generalizes [CN06]⁷ (memoryless, prefix-independent case).

Corollary

W is **finite-memory determined** if and only if W is ω -regular.

Direction " \Leftarrow " is a classical result.⁸

Characterizing ω -Regularity Through Finite-Memory Determinacy

⁶Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2022.

⁷Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

⁸Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969; Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

Summary

Contributions

- Strategic characterization of ω -regularity, generalizing [CN06].⁹
- Strengthens **link** between the representation of an objective and its memory requirements.

Future work

- Precise memory requirements for each player given an objective?
- Similar characterizations in other game models (stochastic, concurrent, imperfect information...).

Thanks!

Characterizing ω -Regularity Through Finite-Memory Determinacy

⁹Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.