
Characterizing ω-Regular Languages Through Strategy
Complexity of Games on Infinite Graphs

Pierre Vandenhove1,2
Joint work with Patricia Bouyer1 and Mickael Randour2

1Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
2F.R.S.-FNRS & UMONS – Université de Mons, Belgium

March 3, 2022 – Séminaire LaBRI - LX



Outline

Strategy synthesis for zero-sum turn-based games on graphs
Design optimal controllers for systems interacting with an antagonistic
environment.

Interest in “simple” controllers
Finite-memory determinacy: when do finite-memory strategies suffice?
Focus on infinite graphs.

Inspiration
Results about memoryless determinacy in finite1 and infinite2 graphs.

1Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
2Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Zero-sum turn-based games on graphs
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• Two-player arenas: S1 (©, for P1) and S2 (�, for P2), edges E .
• Set C of colors. Edges are colored.
• Objectives are sets W ⊆ Cω. Zero-sum.
• Strategy for Pi : (partial) function σ : E ∗ → E .

First: finite arenas.

Strategic Characterization of ω-Regular Languages Pierre Vandenhove



Memoryless determinacy

Question
Given an objective, do “simple” strategies suffice to play optimally in all
arenas?

A strategy σ of Pi is memoryless if it is a function��ZZE ∗ Si → E .
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E.g., for Reach(>), memoryless strategies suffice to play optimally.
Also suffice for Büchi, parity, mean-payoff, energy. . . objectives.
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Memoryless determinacy

Memoryless determinacy
An objective W ⊆ Cω is memoryless-determined if memoryless strategies
suffice to play optimally for both players in all (finite) arenas.

We require uniformity: a single memoryless strategy must be winning from
all the states where that is possible.
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Memoryless determinacy

Good understanding of memoryless determinacy in finite arenas:

• sufficient conditions to guarantee memoryless optimal strategies for
both players.3, 4

• sufficient conditions to guarantee memoryless optimal strategies for
one player.5, 6, 7, 8

• characterization of the objectives admitting memoryless optimal
strategies for both players.9

3Gimbert and Zielonka, “When Can You Play Positionally?”, 2004.
4Aminof and Rubin, “First-cycle games”, 2017.
5Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006.
6Gimbert, “Pure Stationary Optimal Strategies in Markov Decision Processes”, 2007.
7Bianco et al., “Exploring the boundary of half-positionality”, 2011.
8Gimbert and Kelmendi, “Submixing and Shift-Invariant Stochastic Games”, 2014.
9Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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Gimbert and Zielonka’s characterization

One-to-two-player memoryless lift (finite arenas)10

Let W ⊆ Cω be an objective. If
• in all one-player arenas of P1, P1 has a memoryless optimal strategy,
• in all one-player arenas of P2, P2 has a memoryless optimal strategy,

then both players have a memoryless optimal strategy in all two-player
arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy
of, e.g., parity and mean-payoff games.

10Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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Application: memoryless determinacy of mean payoff 11

• Colors C = Q. Objective W ⊆ Cω (for P1):
obtain a mean payoff (average color by transition) ≥ 0.

• In one-player arenas, simply reach and loop around the simple cycle
with the greatest (for P1) or smallest (for P2) mean payoff
 memoryless strategy.

[GZ05]====⇒ Memoryless strategies also suffice to play optimally
in two-player arenas!

11Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
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What about infinite arenas?

Motivations
• Links between the strategy complexity in finite and infinite arenas?
• One-to-two-player lift in infinite arenas?
 proof technique for finite arenas (induction on edges) not suited to
infinite arenas.
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Greater memory requirements in infinite arenas

Colors C = Q, objective W = “obtain a mean payoff ≥ 0”.
• Memoryless strategies suffice in finite arenas.
• Infinite memory required in (even one-player) infinite arenas.12

s1 s2 s3 · · ·−1 −1 −1

−1 − 1
2 − 1

3

 Possible to get 0 at the limit with infinite memory:
loop increasingly many times in states sn.

12Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.
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Result on infinite arenas, memoryless strategies

Let W ⊆ Cω be a prefix-independent objective.

Characterization of memoryless determinacy (infinite arenas)13

If memoryless strategies suffice to play optimally for both players in
infinite arenas, then W is a parity condition.

Parity condition: there exists p : C → {0, . . . , n} such that

w = c1c2 . . . ∈W ⇐⇒ lim sup
i

p(ci) is even.

Characterization since parity conditions are memoryless-determined in
arenas of any cardinality.14

13Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
14Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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First insight

Possible to obtain the result with a hypothesis on one-player arenas only!
Let W ⊆ Cω be a prefix-independent objective.

Characterization of memoryless determinacy (infinite arenas)
If memoryless strategies suffice to play optimally for both players in
one-player infinite arenas, then W is a parity condition.

Proof of one-to-two-player lift:

Memoryless determinacy in one-player infinite arenas
[CN06]====⇒ W is a parity condition

=⇒ memoryless determinacy in two-player infinite arenas.
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Two “limits” of the result

1 What about strategies with finite memory?
 More and more prevalent in the literature.

2 Some simple memoryless-determined objectives are not
prefix-independent (e.g., Reach(>)).
 This characterization misses memoryless-determined objectives.
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Finite memory

Finite-memory strategy ≈ memory structure + next-action function.

Memory structure
Memory structure (M,minit, αupd): finite set of states M, initial state minit,
update function αupd : M × C → M.

Ex.: remember whether a or b was last played (not yet a strategy!):

a b

a

b

m1 m2

Given an arena A = (S, S1, S2,E ): next-action function αnxt : Si ×M → E .

Memoryless strategies use memory structure C .
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Finite-memory determinacy

Finite-memory determinacy
An objective W is finite-memory-determined if there exists a finite
memory structureM that suffices to play optimally for both players in all
arenas A.

Technical comment
Usually, the definition inverts the order of the quantifiers. The order has an
impact in finite arenas,15 but not in infinite arenas.

15Bouyer, Le Roux, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2020.
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One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to
one-player memory determinacy?

Arenas\Str. comp. Memoryless FM “∃M∀A” Mildly growing
Finite deterministic [GZ05]16 [BLORV20]17 [Koz21]18

Finite stochastic [GZ09]19 [BORV21]20

Infinite determin. P-Ind: [CN06]21 [BRV22]22

16Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
17Bouyer, Le Roux, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2020.
18Kozachinskiy, “One-to-Two-Player Lifting for Mildly Growing Memory”, 2021.
19Gimbert and Zielonka, “Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global

Preferences”, 2009.
20Bouyer, Oualhadj, et al., “Arena-Independent Finite-Memory Determinacy in Stochastic Games”, 2021.
21Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
22Bouyer, Randour, and Vandenhove, “Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on

Infinite Graphs”, 2022.
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Get rid of prefix-independence? Right congruence

Let L be a language of finite words on alphabet C .

Right congruence
For x , y ∈ C∗, x ∼L y if for all z ∈ C∗, xz ∈ L⇔ yz ∈ L.

Myhill-Nerode theorem23

• L is regular if and only if ∼L has finitely many equivalence classes.
• The equivalence classes of ∼L correspond to the states of the
minimal DFA for L.

23Nerode, “Linear Automaton Transformations”, 1958.
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Get rid of prefix-independence? Right congruence

Let W be a language of infinite words (= an objective) on alphabet C .

Right congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇔ yz ∈W .

Links with ω-regularity?

• If W is ω-regular, then ∼W has finitely many equivalence classes.
In this case, there is a DFAM∼ “prefix-classifier” associated with ∼W .
• The reciprocal is not true.

Strategic Characterization of ω-Regular Languages Pierre Vandenhove



Four examples

Objective Prefix-classifierM∼ Memory

Parity objective C C 7→ {0, . . . , n}

C = Q,

W = MP≥0
C No finite automaton

C = {a, b},

W = b∗ab∗aCω

b, 1 b, 1

C , 2
a, 1 a, 1 C

C = {a, b},

W = C∗(ab)ω
C b, 1 a, 1

a, 0

b, 0
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Main result

Let W ⊆ Cω be an objective.

Theorem
If a finite memory structureM suffices to play optimally in one-player
infinite arenas for both players, thenM∼ is finite and W is recognized by a
parity automaton (M∼ ⊗M, p).

 ifM∼ ⊗M = (M,minit, αupd),

p : M × C → {0, . . . , n}.

Generalizes [CN06]24 (M∼ =M = C ).

24Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Corollaries

Let W ⊆ Cω be an objective.

One-to-two-player FM lift (infinite arenas)
If W is finite-memory-determined in one-player infinite arenas, then W is
finite-memory-determined in two-player infinite arenas.

Characterization
W is finite-memory-determined if and only if W is ω-regular.

Proof. W is finite-memory-determined in one-player arenas
[BRV22]=====⇒ W is recognized by a deterministic parity automaton (ω-regular).
=⇒ this parity automaton (as a memory) suffices in two-player arenas.25
=⇒ this parity automaton (as a memory) suffices in one-player arenas.

25Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Summary

Contributions
• New one-to-two-player lift for zero-sum games on infinite graphs.
• Strategic characterization of ω-regular languages.

Future work
• Other classes of arenas (e.g., finitely branching).
• Only one player has FM optimal strategies?26

Thanks!
26Chatterjee and Fijalkow, “Infinite-state games with finitary conditions”, 2013.
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