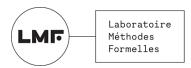
Characterizing ω -Regular Languages Through Strategy Complexity of Games on Infinite Graphs

Pierre Vandenhove^{1,2}

Joint work with Patricia Bouyer¹ and Mickael Randour²

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium

March 3. 2022 – Séminaire LaBRI - LX



Outline

Strategy synthesis for zero-sum turn-based games on graphs

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

Interest in "simple" controllers

Finite-memory determinacy: when do **finite-memory** strategies suffice? Focus on **infinite** graphs.

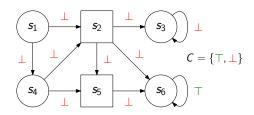
Inspiration

Results about **memoryless determinacy** in finite¹ and infinite² graphs.

 $^{^{1}\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^2}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Zero-sum turn-based games on graphs



- Two-player **arenas**: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\square , for \mathcal{P}_2), edges E.
- Set C of colors. Edges are colored.
- Objectives are sets $W \subseteq C^{\omega}$. Zero-sum.
- **Strategy** for \mathcal{P}_i : (partial) function $\sigma \colon E^* \to E$.

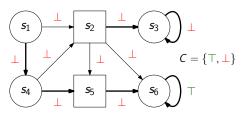
First: finite arenas.

Memoryless determinacy

Question

Given an objective, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.



E.g., for Reach(\top), **memoryless** strategies suffice to play optimally.

Also suffice for Büchi, parity, mean-payoff, energy... objectives.

Memoryless determinacy

Memoryless determinacy

An objective $W \subseteq C^{\omega}$ is **memoryless-determined** if memoryless strategies suffice to play optimally for both players in all (finite) arenas.

We require *uniformity*: a **single** memoryless strategy must be winning from all the states where that is possible.

Memoryless determinacy

Good understanding of **memoryless determinacy** in finite arenas:

- sufficient conditions to guarantee memoryless optimal strategies for both players.^{3,4}
- sufficient conditions to guarantee memoryless optimal strategies for one player. 5, 6, 7, 8
- characterization of the objectives admitting memoryless optimal strategies for both players.⁹

 $^{^3\}mbox{Gimbert}$ and Zielonka, "When Can You Play Positionally?", 2004.

⁴Aminof and Rubin, "First-cycle games", 2017.

 $^{^5\}mbox{Kopczy}\mbox{\acute{n}ski}, \mbox{ "Half-Positional Determinacy of Infinite Games", 2006.}$

 $^{^6}$ Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

⁷Bianco et al., "Exploring the boundary of half-positionality", 2011.

 $^{^8\}mbox{Gimbert}$ and Kelmendi, "Submixing and Shift-Invariant Stochastic Games", 2014.

 $^{^9\}mathrm{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Gimbert and Zielonka's characterization

One-to-two-player memoryless lift (**finite** arenas)¹⁰

Let $W \subseteq C^{\omega}$ be an objective. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has a memoryless optimal strategy,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has a memoryless optimal strategy, then both players have a memoryless optimal strategy in all **two-player** arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., parity and **mean-payoff** games.

¹⁰Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Application: memoryless determinacy of **mean payoff** ¹¹

- Colors $C = \mathbb{Q}$. Objective $W \subseteq C^{\omega}$ (for \mathcal{P}_1): obtain a **mean payoff** (average color by transition) ≥ 0 .
- In one-player arenas, simply reach and loop around the simple cycle with the greatest (for P₁) or smallest (for P₂) mean payoff
 → memoryless strategy.

Memoryless strategies also suffice to play optimally in **two-player** arenas!

¹¹Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What about **infinite arenas**?

Motivations

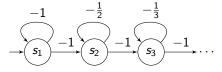
infinite arenas.

- Links between the strategy complexity in finite and infinite arenas?
- One-to-two-player lift in infinite arenas?
 → proof technique for finite arenas (induction on edges) not suited to

Greater memory requirements in **infinite** arenas

Colors $C = \mathbb{Q}$, objective W = "obtain a mean payoff ≥ 0 ".

- **Memoryless** strategies suffice in **finite** arenas.
- Infinite memory required in (even one-player) infinite arenas.¹²



Possible to get 0 at the limit with infinite memory: loop increasingly many times in states s_n .

¹²Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

Result on infinite arenas, memoryless strategies

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of memoryless determinacy (infinite arenas)¹³

If **memoryless strategies** suffice to play optimally for both players in **infinite arenas**, then W is a **parity condition**.

Parity condition: there exists $p: C \to \{0, ..., n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

Characterization since parity conditions are memoryless-determined in arenas of any cardinality. ¹⁴

¹³Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

¹⁴Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

First insight

Possible to obtain the result with a hypothesis on **one-player** arenas only! Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of memoryless determinacy (infinite arenas)

If memoryless strategies suffice to play optimally for both players in one-player infinite arenas, then W is a parity condition.

Proof of **one-to-two-player lift**:

Memoryless determinacy in **one-player** infinite arenas $\stackrel{[CN06]}{\Longrightarrow} W$ is a parity condition

memoryless determinacy in **two-player** infinite arenas.

Two "limits" of the result

- What about strategies with finite memory?
 - → More and more prevalent in the literature.
- 2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
 - → This characterization misses memoryless-determined objectives.

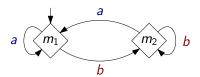
Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $(M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function $\alpha_{\text{upd}} \colon M \times C \to M$.

Ex.: remember whether a or b was last played (**not yet a strategy!**):



Given an arena $\mathcal{A}=(S,S_1,S_2,E)$: next-action function $\alpha_{\mathsf{nxt}}\colon S_i\times M\to E$. Memoryless strategies use **memory structure** $\to C$.

Finite-memory determinacy

Finite-memory determinacy

An objective W is **finite-memory-determined** if **there exists** a **finite memory structure** \mathcal{M} that suffices to play optimally for both players **in all arenas** \mathcal{A} .

Technical comment

Usually, the definition inverts the order of the quantifiers. The order has an impact in **finite arenas**, ¹⁵ but not in **infinite arenas**.

¹⁵Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to one-player memory determinacy?

Arenas\Str. comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite deterministic	[GZ05] ¹⁶	[BLORV20] ¹⁷	[Koz21] ¹⁸
Finite stochastic	[GZ09] ¹⁹	[BORV21] ²⁰	
Infinite determin.	P-Ind: [CN06] ²¹	[BRV22] ²²	

 $^{^{16}\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^{17}}$ Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

 $^{^{18}\}mbox{Kozachinskiy},$ "One-to-Two-Player Lifting for Mildly Growing Memory", 2021.

 $^{^{19}}$ Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

 $^{^{20}} Bouyer, \ Oualhadj, \ et \ al., \ "Arena-Independent \ Finite-Memory \ Determinacy \ in \ Stochastic \ Games", \ 2021.$

 $^{^{21}}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

 $^{^{22}\}mbox{Bouyer},$ Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2022.

Get rid of prefix-independence? Right congruence

Let L be a language of **finite** words on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_L y$ if for all $z \in C^*$, $xz \in L \Leftrightarrow yz \in L$.

Myhill-Nerode theorem²³

- L is regular if and only if \sim_L has finitely many equivalence classes.
- The equivalence classes of \sim_L correspond to the states of the minimal DFA for L.

²³Nerode, "Linear Automaton Transformations", 1958.

Get rid of prefix-independence? Right congruence

Let W be a language of **infinite** words (= an objective) on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \Leftrightarrow yz \in W$.

Links with ω -regularity?

- If W is ω -regular, then \sim_W has finitely many equivalence classes. In this case, there is a DFA \mathcal{M}_{\sim} "prefix-classifier" associated with \sim_W .
- The reciprocal is not true.

Four examples

Objective	Prefix-classifier \mathcal{M}_{\sim}	Memory
Parity objective	$\rightarrow \bigcirc \sim $	$\rightarrow \bigcirc C \mapsto \{0,\ldots,n\}$
$C=\mathbb{Q}$,	-\^\c	No finite automaton
$W = MP^{\geq 0}$		No lilite automaton
	b, 1 b, 1	
$C=\{a,b\},$	\bigcirc a 1 \bigcirc a 1 \triangle	→ () (
$W=b^*ab^*aC^\omega$	$\longrightarrow C,2$	
$C = \{a, b\},$		a, 0
$W=\mathit{C}^*(\mathit{ab})^\omega$	$\rightarrow \swarrow \searrow C$	$\begin{array}{c c} b,1 & & \\ & b,0 & \\ \end{array}$

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a finite memory structure \mathcal{M} suffices to play optimally in **one-player** infinite arenas for both players, then \mathcal{M}_{\sim} is finite and W is recognized by a **parity automaton** $(\mathcal{M}_{\sim} \otimes \mathcal{M}, p)$.

$$\rightsquigarrow$$
 if $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}}),$

$$p: \mathbf{M} \times \mathbf{C} \to \{0, \ldots, n\}.$$

Generalizes [CN06]²⁴ (
$$\mathcal{M}_{\sim} = \mathcal{M} = \longrightarrow \subset C$$
).

²⁴Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Corollaries

Let $W \subseteq C^{\omega}$ be an objective.

One-to-two-player FM lift (infinite arenas)

If W is finite-memory-determined in **one-player** infinite arenas, then W is finite-memory-determined in **two-player** infinite arenas.

Characterization

W is **finite-memory-determined** if and only if W is ω -regular.

 $\textbf{Proof.} \ \ \textit{W} \ \ \text{is finite-memory-determined in } \ \textbf{one-player} \ \ \text{arenas}$

W is recognized by a deterministic parity automaton (ω -regular).

 \implies this parity automaton (as a memory) suffices in **two-player** arenas. ²⁵

 \implies this parity automaton (as a memory) suffices in **one-player** arenas.

 $^{^{25}}$ Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Summary

Contributions

- New one-to-two-player lift for zero-sum games on infinite graphs.
- Strategic characterization of ω -regular languages.

Future work

- Other classes of arenas (e.g., finitely branching).
- Only one player has FM optimal strategies?²⁶

Thanks!

²⁶Chatterjee and Fijalkow, "Infinite-state games with finitary conditions", 2013.