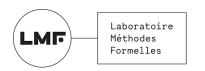
Characterizing ω -Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

Patricia Bouyer¹, Mickael Randour², Pierre Vandenhove^{1,2}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²F.R.S.-FNRS & UMONS - Université de Mons, Belgium

August 26, 2022 - LAMAS & SR 2022



Outline

Strategy synthesis for zero-sum turn-based games

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

Interest in "simple" strategies

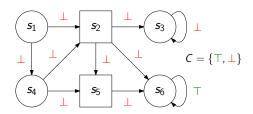
Finite-memory determinacy: when do **finite-memory** strategies suffice? Focus on games on **infinite** graphs.

Inspiration

Results about memoryless determinacy. 1

¹Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Zero-sum turn-based games on graphs



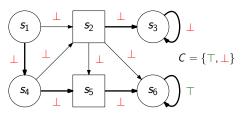
- Two-player arenas: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\square , for \mathcal{P}_2), edges E.
- Set C of colors. Edges are colored.
- Objectives are sets $W \subseteq C^{\omega}$. Zero-sum.
- **Strategy** for \mathcal{P}_i : function $\sigma \colon E^* \to E$.

Memoryless determinacy

Question

For an objective, do simple strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not \succeq S_i \to E$.



E.g., for Reach(\top), **memoryless** strategies suffice to play optimally. Also suffice for Büchi, parity... objectives.

Memoryless determinacy

Good understanding of memoryless determinacy in finite arenas

Sufficient conditions and characterizations of memoryless determinacy

- for **one** player, 2, 3, 4, 5
- for **both** players. 6,7,8

What about infinite arenas?

²Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

³Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

⁴Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁵Gimbert and Kelmendi, "Submixing and Shift-Invariant Stochastic Games", 2014.

⁶Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

⁷Aminof and Rubin, "First-cycle games", 2017.

⁸Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

What about **infinite arenas**?

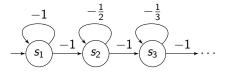
Motivations

- Links between the strategy complexity in finite and infinite arenas?
- Similar sufficient conditions/characterizations for infinite arenas?
 Classical proof technique for finite arenas (induction on number of edges) not suited to infinite arenas.

Greater memory requirements in infinite arenas

Colors $C = \mathbb{Q}$, objective W = "get a mean payoff ≥ 0 ".

- Memoryless strategies sufficient in finite arenas.⁹
- Infinite memory required in infinite arenas. 10



Possible to get 0 at the limit with infinite memory: loop increasingly many times in states s_n .

⁹Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

¹⁰Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

Nice result

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of memoryless determinacy¹¹

If **memoryless strategies** suffice to play optimally for **both** players in all **infinite arenas**, then W is a **parity condition**.

Parity condition: there exists $p \colon C \to \{0, \dots, n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

Characterization since parity conditions are memoryless-determined. 12

 $^{^{11}\}mbox{Colcombet}$ and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

 $^{^{12} \}hbox{Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.}$

Two possible extensions

- What about strategies with finite memory?
 - → More and more prevalent in the literature.
- 2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
 - → This characterization misses memoryless-determined objectives.

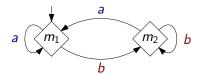
1. Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $(M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function $\alpha_{\sf upd} \colon M \times C \to M$.

Ex.: remember whether a or b was last seen:



Given an arena $\mathcal{A} = (S, S_1, S_2, E)$: next-action function $\alpha_{nxt} : S_i \times M \to E$.

Memoryless strategies use memory structure →

1. Finite-memory determinacy

Finite-memory determinacy

An objective W is **finite-memory-determined** if **there exists** a **finite memory structure** \mathcal{M} that suffices to play optimally for both players **in all arenas** \mathcal{A} .

Remark

Usually, the definition inverts the order of the quantifiers. The order has an impact in **finite arenas**, 13 but not in **infinite arenas**.

 $^{^{13}}$ Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

2. Get rid of prefix-independence? Congruence

Let L be a language of **finite** words on alphabet C.

Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_L y$ if for all $z \in C^*$, $xz \in L \Leftrightarrow yz \in L$.

Myhill-Nerode theorem 14

L is regular if and only if \sim_L has finitely many equivalence classes. The equivalence classes of \sim_L correspond to the states of the minimal DFA for L.

¹⁴Nerode, "Linear Automaton Transformations", 1958.

2. Get rid of prefix-independence? Congruence

Let W be a language of **infinite** words (= an objective) on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \Leftrightarrow yz \in W$.

Links with ω -regularity?

- If W is ω -regular, then \sim_W has finitely many equivalence classes. In this case, there is a DFA \mathcal{M}_{\sim} "prefix-classifier" associated with \sim_W .
- Reciprocal not true.

W is **prefix-independent** if and only if \sim_W has only one equivalence class.

Four examples

Objective	Prefix-classifier \mathcal{M}_{\sim}	Memory
$C=\{0,\ldots,n\},$	-\^\c	$\rightarrow \bigcirc C \mapsto \{0,\ldots,n\}$
Parity condition		
$C=\mathbb{Q}$,	-\^\c	No finite structure
$W = MP^{\geq 0}$		No mile structure
	b, 1 b, 1	
$C=\{a,b\},$	a,1 $a,1$ $C,2$	$\rightarrow \bigcirc C$
$W=b^*ab^*aC^\omega$	C,2	
$C = \{a, b\},$	$\wedge \gamma_{c}$	↓ a, 0
$W=C^*(ab)^\omega$	→ ($\begin{array}{c c} a,1 & b,0 \\ \hline \end{array}$

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a finite memory structure ${\mathcal M}$ suffices to play optimally in infinite arenas for both players, **then**

- $(\mathcal{M}_{\sim} \text{ is finite, and})$
- W is recognized by a parity automaton $(\mathcal{M}_{\sim} \otimes \mathcal{M}, p)$.

$$\rightsquigarrow$$
 if $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\mathsf{init}}, \alpha_{\mathsf{upd}})$,

$$p: \mathbf{M} \times \mathbf{C} \to \{0, \ldots, n\}.$$

Generalizes [CN06] 15 (where $\mathcal{M}_{\sim}=\mathcal{M}=$ \longrightarrow C).

¹⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Corollary

Let $W \subseteq C^{\omega}$ be an objective.

Characterization

W is **finite-memory-determined** if and only if W is ω -regular.

Proof. *W* is finite-memory-determined.

W is recognized by a deterministic parity automaton (ω -regular).

 \Longrightarrow 16 this parity automaton (as a memory) suffices in infinite arenas.

 $^{^{16} \}hbox{Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.}$

Summary

Contributions

- Strategic characterization of ω -regularity, generalizing [CN06]. 17
- (Not mentioned) New one-to-two-player lift for zero-sum games on infinite graphs.

Future work

- Other classes of arenas (e.g., finitely branching)?
- Only one player has finite-memory optimal strategies?¹⁸

Thanks!

 $^{^{17}}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

¹⁸Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.