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Overview

Strategy complexity
Understand if complex strategies must be used, or if simple strategies
suffice to achieve an objective in presence of an antagonistic environment.

Aim of the talk
• Motivate the question of strategy complexity.
• Present the state of the art.
• Review recent results on the topic (part of my PhD thesis).
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Context: synthesis

• An (incomplete, reactive) system,
• living in an (uncontrollable) environment,
• with a purpose/specification.
 Modeling through a zero-sum game.

Incomplete
system S

Environment

Specification

Zero-sum
game

Two players

Game objective

Solving
the game

S wins +
winning
strategy

S cannot
enforce a win
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Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .

Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 4 / 38



Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = b

abbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .

Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 4 / 38



Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = ba

bbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .

Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 4 / 38



Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = bab

bc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .

Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 4 / 38



Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babb

c . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .

Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 4 / 38



Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player Pi is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .

Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 4 / 38



Example

C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}

v1 v2

a

c

b
a

b

v3

P1 has a winning strategy from every vertex.
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Strategy complexity

• Given a game and an initial vertex  who can win?
• To decide it, exhibit a winning strategy of a player.
• Issues:
I strategies σ : E∗ → E may not have a finite representation;
I there are infinitely many of them.

Strategy complexity
Given an objective, understand if simple strategies suffice to win,
or if complex strategies are required to win (when possible).

Desirable properties:
• winning strategies use bounded information (finite representation!);
• computable bounds (finite number of strategies!).
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Simple strategies

Memoryless strategies
A strategy is memoryless if it makes decisions based only on the current
arena vertex (σ : Vi → E ).

Finite-memory strategies
A strategy is finite-memory if it makes decisions based on
• the current arena vertex, and
• the current state of a finite memory structure.
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Memory structures

Memory structures
A memory structure is a tupleM = (M,minit, αupd) where M is a finite
set of states, minit ∈ M, and αupd : M × C → M.

GivenM and an arena A = (V1,V2,E ), a finite-memory strategy of Pi is a
function

σ : Vi ×M → E .

Remark
Memory structures are chromatic: only observe colors.
Given A = (V1,V2,E ), slightly more general1 to have

αupd : M × E → M.

Still, we consider here chromatic structures (additional motivation later).

1Casares, “On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller
Conditions”, 2022.
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Examples

E.g., structure to remember whether a or b was last seen:

a b

a

b

m1 m2

Memoryless strategies use memory structure C .
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Example

C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}

a, c b, c

a

b

m1 m2

σ(v1,m1) =
c−→ v2

σ(v2,m1) =
b−→ v2

σ(v2,m2) =
c−→ v1

σ(v1,m2) =
a−→ v2

a b

v1 v2c

c

 Memoryless strategies do not suffice. . .
but two memory states do! There is a winning strategy σ : V1 ×M → E .
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Finite-memory determinacy

Memoryless determinacy

An objective is memoryless-determined if in all arenas,
memoryless strategies suffice for both players.

Finite-memory determinacy

An objective is finite-memory determined if in all arenas,
finite-memory strategies suffice for both players.

Various definitions depending on
• the class of arenas considered (finite, infinite, finitely branching. . . ),
• whether we focus on both players or a single player.
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State of the art: Memoryless determinacy

Many “classical” objectives are memoryless-determined:
reachability, Büchi, parity, energy, mean payoff, discounted sum. . .

Memoryless determinacy is well-understood:

• Sufficient conditions for both players,2 for a single player.3

• Characterizations for both players over finite4/infinite5 arenas,
for a single player over infinite arenas.6

2Gimbert and Zielonka, “When Can You Play Positionally?”, 2004; Aminof and Rubin, “First-cycle games”, 2017.
3Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006; Bianco et al., “Exploring the boundary of

half-positionality”, 2011.
4Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
5Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
6Ohlmann, “Characterizing Positionality in Games of Infinite Duration over Infinite Graphs”, 2023.
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State of the art: Finite-memory determinacy

• Finite-memory determinacy is understood for specific objectives,7
but few results of wide applicability.8

• Central class: ω-regular objectives. Examples with C = {a, b}:

ω-regular expressions

b∗ab∗aCω

ω-automata

qinit qa qaa

a•

b
•

a•b a, b•

Linear temporal logic (LTL)

GFa

Theorem9, 10

All ω-regular objectives are finite-memory determined.

7Chatterjee, Randour, and Raskin, “Strategy synthesis for multi-dimensional quantitative objectives”, 2014; Colcombet,
Fijalkow, and Horn, “Playing Safe”, 2014; Bouyer, Hofman, et al., “Bounding Average-Energy Games”, 2017.

8Le Roux, Pauly, and Randour, “Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions”,
2018; Bouyer, Le Roux, and Thomasset, “Finite-Memory Strategies in Two-Player Infinite Games”, 2022.

9Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
10Rabin, “Decidability of Second-Order Theories and Automata on Infinite Trees”, 1969.
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Significance

Consequences of a fine-grained understanding of strategy complexity:

• Decidability of logical theories through FM det. (see monadic
second-order logic, linked to ω-regular objectives11).

• Practical synthesis problems through FM det. (see, e.g., LTL
specifications12).

• At the core of algorithms to solve games (see, e.g., parity games13).

• Controllers as compact as possible.

11Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
12Pnueli, “The Temporal Logic of Programs”, 1977.
13Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Plan: three results

• Two “theoretical” characterizations of finite-memory determinacy:
I I. Reduction to simpler arenas.
I II. Link with automaton representation.

• III. One “effective” characterization to compute small memory
structures; focus on ω-regular objectives.

Joint works with P. Bouyer, A. Casares, N. Fijalkow, S. Le Roux,
Y. Oualhadj, M. Randour.
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I. Reduction to simpler arenas
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Reduction to simpler arenas

One-to-two-player memoryless lift (finite arenas)14

Let W ⊆ Cω be an objective. If
• in all one-player arenas of P1, P1 has memoryless winning strategies,
• in all one-player arenas of P2, P2 has memoryless winning strategies,

then both players have memoryless winning strategies in two-player arenas.

Strategy complexity does not increase when an opponent is added!
Easy to recover memoryless determinacy of, e.g., parity15 and
mean-payoff 16 objectives.

What about finite-memory determinacy?

14Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
15Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
16Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
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What about finite-memory determinacy?

• Counterexample to a one-to-two-player lift for FM determinacy .
• In the counterexample, the size of the memory depends on the size
of the one-player arenas. Motivates the restriction to. . .

Arena-independent finite memory
An objective is arena-independent finite-memory determined if

there exists a memory structure M such that for all arenas A,

strategies based onM suffice to win in A.

• Requires chromatic memory structures.
• Still holds for ω-regular objectives!
• One-to-two-player lift works!
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Example

C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}

This memory structure actually suffices in all arenas!

a, c b, c

a

b

m1 m2

 W is arena-independent finite-memory determined.
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One-to-two-player finite-memory lift

One-to-two-player FM lift [Bouyer, Le Roux, Oualhadj, Randour, V., 2022]17

Let W ⊆ Cω be an objective andM1,M2 be memory structures. If
• in all one-player arenas of P1, P1 has winning strategies based onM1,
• in all one-player arenas of P2, P2 has winning strategies based onM2,

then both players have winning strategies based onM1 ⊗M2 in
two-player arenas.

17Bouyer, Le Roux, Oualhadj, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2022.
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One-to-two-player lifts

When does strategy complexity in two-player zero-sum games
reduce to strategy complexity in one-player games?

Arenas\Str. comp. Memoryless FM “∃M∀A” Mildly growing
Finite [GZ05]18 [BLORV22]19 [Koz22]20

Infinite [CN06]21 [BRV23]22

Finite stochastic [GZ09]23 [BORV21]24

18Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
19Bouyer, Le Roux, Oualhadj, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2022.
20Kozachinskiy, “One-To-Two-Player Lifting for Mildly Growing Memory”, 2022.
21For prefix-independent objectives; Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
22Bouyer, Randour, and Vandenhove, “Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on

Infinite Graphs”, 2023.
23Gimbert and Zielonka, “Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global

Preferences”, 2009.
24Bouyer, Oualhadj, et al., “Arena-Independent Finite-Memory Determinacy in Stochastic Games”, 2021.
Strategy Complexity of Zero-Sum Games on Graphs Pierre Vandenhove 21 / 38



II. Link with automaton representation
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Second reduction: Link with automaton representation

Let W ⊆ Cω be an objective.

(Almost) Myhill-Nerode congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇐⇒ yz ∈W .

I.e., x and y have the same winning continuations; as good as each other.

Properties

• If W is ω-regular, then ∼W has finitely many equivalence classes.
• There is a DFA SW “prefix classifier” associated with ∼W .

SW might not “recognize” the objective ( 6= languages of finite words). . .
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Two examples

. . . but there is a decomposition with prefix classifier × memory
structure.
Let C = {a, b}.

Objective Prefix classifier SW Sufficient memory

W = b∗ab∗aCω

b b

Ca a C

W = “a and b ∞ly often” C a b
b•
a•
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From memory to automaton

Let W ⊆ Cω be an objective.

Theorem [Bouyer, Randour, V., 2023]25

If a finite memory structureM suffices to win in infinite arenas for both
players, then

W is recognized by a parity automaton (SW ⊗M, p).

In particular,
W is arena-independent finite-memory determined over infinite arenas

⇐⇒
W is ω-regular.

Generalizes [CN06]26 (prefix-independent, memoryless case).

25Bouyer, Randour, and Vandenhove, “Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on
Infinite Graphs”, 2023.

26Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Up to now

Summary
Two characterizations to help study kinds of finite-memory determinacy.

Limits
Few hypotheses, but. . .
• not fully effective;
• in general, no tight memory requirements for each player.
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III. Effective characterization
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First: a well-studied case

For F ⊆ 2C , objective Muller(F) is the set of words whose set of colors
seen infinitely often is in F .

Examples with C = {a, b}:
• Muller({{a}, {a, b}}) = “∞ly many a”,
• Muller({{a, b}}) = “∞ly many a and ∞ly many b”.

Memory requirements of Muller objectives
Series of papers between 1982 and 1998,27, 28, 29, 30 ending with a precise
characterization and an algorithm.31

 Upper bound on memory requirements for all ω-regular objectives!
27Gurevich and Harrington, “Trees, Automata, and Games”, 1982.
28Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
29Klarlund, “Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata”, 1994.
30Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
31Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
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Why an upper bound?

Let C = {a, b}, W = b∗ab∗aCω (≈ seeing a two or more times).
How to use results about Muller objectives?
W is not directly an objective Muller(F) with F ⊆ 2C

 needs an automaton structure.

q1 q2 q3

b b

Ca a

 W = Muller({{q3}}).

Using [DJW97],32 we need 1 memory state. . .
. . . after augmenting the arenas with the automaton,

so upper bound of 3 states of memory.
But 1 memory state suffices for winning strategies!

32Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
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Other direction: Regular objectives

Missing pieces
Alternative quest: objectives where “finite prefixes matter”.

Regular objectives

• A regular reachability objective is a set LCω with L ⊆ C∗ regular.
• A regular safety objective is a set Cω \ LCω.

Expressible as standard deterministic finite automata.
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Question

Memory requirements of regular objectives
Characterize the memory structures that suffice to make optimal
decisions for regular objectives in any arena. Compute minimal ones.

Ideas
• A DFA recognizing the language L, taken as a memory structure,

always suffices for both players
(≈ usual approach: taking the product of the arena and the DFA).
• But can be much smaller in general!
• Properties linked to the Myhill-Nerode congruence.

I explain one of these properties here.
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Comparing words
Let W ⊆ Cω be an objective.

Comparing prefixes
For x , y ∈ C∗, x �W y if for all z ∈ Cω, xz ∈W =⇒ yz ∈W .

I.e., y has more winning continuations than x ; better situation.

Example
Let W be the regular reachability objective induced by this DFA.

qinit

qa

qb

qab

a

b

b

a

a

b

a, b E.g., ε ≺W a,
a and b are incomparable for �W .
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Necessary condition
Let W ⊆ Cω be an objective,M = (M,minit, αupd) be a memory structure.

Lemma
ForM to suffice for P1,M needs to distinguish incomparable words:

if x , y ∈ C∗ are incomparable for �W , then

minit

mx

my

6=

x

y

Why? We can build an arena in which distinguishing x and y is critical.

v2 v1

a

b

b

a

b

a
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Characterizations

Theorem [Bouyer, Fijalkow, Randour, V., 2023]33

Let W be a regular safety objective.
A memory structureM suffices in all arenas for P1

if and only if
M distinguishes incomparable words.

qinit

qa

qb

qab

a

b

b

a

c, d

a, c, d

b, c, d

qc

qd

qcd

c

d

d

c

a, b

a, b, c

a, b, d

a, b, c, dΓm1

Γm2

Γm3

m1 m2 m3
b

a, c, d a, b, d
c

a, b, c

d

Close characterization for regular reachability objectives.

33Bouyer, Fijalkow, et al., “How to Play Optimally for Regular Objectives?”, 2023.
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Computational complexity

Decision problems
Input: An automaton D inducing the regular reachability (or safety)
objective W and k ∈ N.
Question: ∃ a memory structureM with ≤ k states that suffices for W ?

Thanks to the “effectiveness” of the properties, we showed that:

Theorem34

These problems are NP-complete.

34Bouyer, Fijalkow, et al., “How to Play Optimally for Regular Objectives?”, 2022.
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Implementation
Algorithms35 that find minimal memory structures for regular objectives,
using a SAT solver.

D =

M = memReq.smallest_memory_safety(D)

35https://github.com/pvdhove/regularMemoryRequirements
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Overview
Objectives with algorithms to compute minimal memory structures:

ω-regular
objectives

Regular
objectivesMuller

conditions

Det. Büchi aut.

Prefix-independent
objectives

Only memoryless strategies for deterministic Büchi automata!
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Future works

• Automatically compute minimal memory structures for all
ω-regular objectives?

• More powerful memory structures.
I Observing edges rather than colors (arena-dependent).
I Well-behaved nondeterminism (history-determinism).36

• Practical advantage in knowing the minimal memory structure?

Thanks!

36Boker and Lehtinen, “When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism”, 2023.
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