Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove

LaBRI, Université de Bordeaux

November 24, 2023 - Links Seminar, Lille

université de **BORDEAUX**

Overview

Strategy complexity

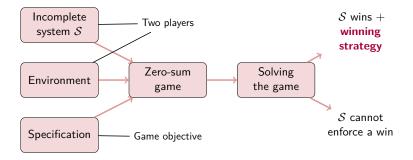
Understand if **complex** strategies must be used, or if **simple** strategies suffice to achieve an **objective** in presence of an **antagonistic** environment.

Aim of the talk

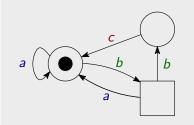
- Motivate the question of strategy complexity.
- Present the state of the art.
- Review recent results on the topic (part of my PhD thesis).

Context: synthesis

- An (incomplete, *reactive*) system,
- living in an (uncontrollable) environment,
- with a purpose/**specification**.
- \rightsquigarrow Modeling through a zero-sum game.



Zero-sum turn-based games on graphs

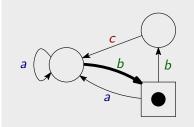


- Colors C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $\mathcal{C}^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

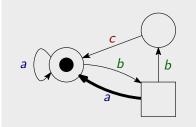
Zero-sum turn-based games on graphs



- **Colors** *C*, arena $A = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 - \rightsquigarrow infinite word w = b
- Objective of P₁ is a set W ⊆ C^ω.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

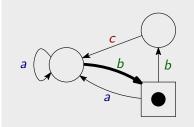
Zero-sum turn-based games on graphs



- **Colors** *C*, arena $A = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 - \rightsquigarrow infinite word w = ba
- Objective of P₁ is a set W ⊆ C^ω.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

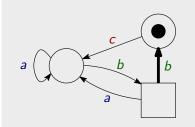
Zero-sum turn-based games on graphs



- **Colors** *C*, arena $A = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 - \rightsquigarrow infinite word w = bab
- Objective of P₁ is a set W ⊆ C^ω.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

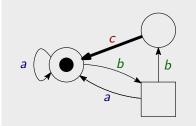
Zero-sum turn-based games on graphs



- Colors C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 - \rightsquigarrow infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

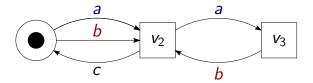


- Colors C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two **players** \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction
 - \rightsquigarrow infinite word $w = babbc \ldots \in C^{\omega}$.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

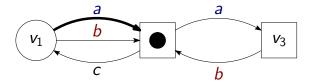
 $C = \{a, b, c\},\$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$



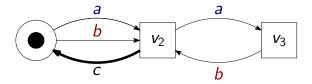
 $C = \{a, b, c\},\$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$



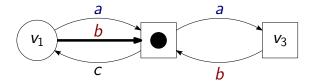
 $C = \{a, b, c\},\$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$



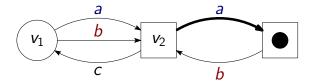
 $C = \{a, b, c\},\$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$



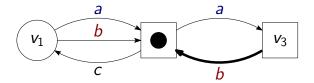
 $C = \{a, b, c\},\$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$



 $C = \{a, b, c\},\$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$



Strategy complexity

- Given a game and an initial vertex ~> who can win?
- To decide it, exhibit a **winning strategy** of a player.
- Issues:
 - Strategies $\sigma: E^* \to E$ may not have a finite representation;
 - there are infinitely many of them.

Strategy complexity

Given an **objective**, understand if **simple** strategies suffice to win, or if **complex** strategies are required to win (when possible).

Desirable properties:

- winning strategies use bounded information (finite representation!);
- computable bounds (finite number of strategies!).

Simple strategies

Memoryless strategies

A strategy is **memoryless** if it makes decisions based only on the **current** arena vertex ($\sigma: V_i \rightarrow E$).

Finite-memory strategies

A strategy is finite-memory if it makes decisions based on

- the current arena vertex, and
- the current state of a finite *memory structure*.

Memory structures

Memory structures

A memory structure is a tuple $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ where M is a finite set of states, $m_{\text{init}} \in M$, and $\alpha_{\text{upd}} \colon M \times C \to M$.

Given \mathcal{M} and an arena $\mathcal{A} = (V_1, V_2, E)$, a *finite-memory strategy* of \mathcal{P}_i is a function

 $\sigma\colon V_i\times M\to E.$

Remark

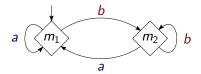
Memory structures are **chromatic**: only observe colors. Given $\mathcal{A} = (V_1, V_2, E)$, slightly more general¹ to have

 $\alpha_{upd} \colon M \times E \to M.$

Still, we consider here chromatic structures (additional motivation later).

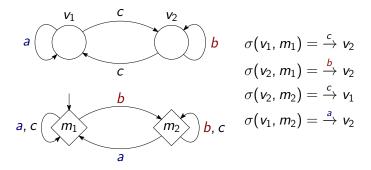
¹Casares, "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

E.g., structure to remember whether a or b was last seen:



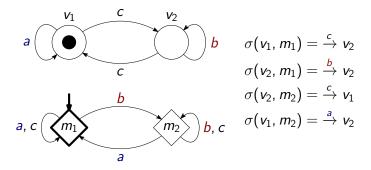
Memoryless strategies use **memory structure** $\rightarrow \bigcirc C$.

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$



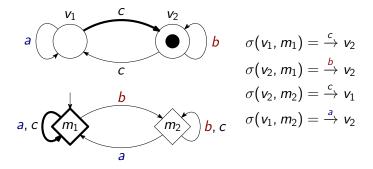
→ Memoryless strategies do **not** suffice...

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$



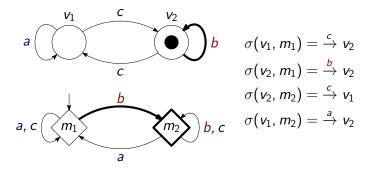
 \rightsquigarrow Memoryless strategies do \boldsymbol{not} suffice. . .

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$



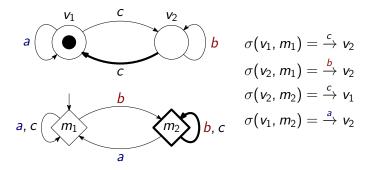
 \rightsquigarrow Memoryless strategies do \boldsymbol{not} suffice. . .

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$



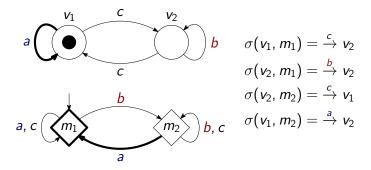
~ Memoryless strategies do **not** suffice...

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$



~ Memoryless strategies do **not** suffice...

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}\$



 \rightsquigarrow Memoryless strategies do \boldsymbol{not} suffice. . .

Finite-memory determinacy

Memoryless determinacy

An objective is memoryless-determined if in all arenas, memoryless strategies suffice for both players.

Finite-memory determinacy

An objective is finite-memory determined if in all arenas, finite-memory strategies suffice for both players.

Various definitions depending on

- the class of arenas considered (finite, infinite, finitely branching...),
- whether we focus on **both** players or a **single** player.

State of the art: Memoryless determinacy

Many "classical" objectives are **memoryless-determined**: reachability, Büchi, parity, energy, mean payoff, discounted sum...

Memoryless determinacy is well-understood:

- Sufficient conditions for both players,² for a single player.³
- **Characterizations** for **both** players over finite⁴/infinite⁵ arenas, for **a single** player over infinite arenas.⁶

²Gimbert and Zielonka, "When Can You Play Positionally?", 2004; Aminof and Rubin, "First-cycle games", 2017.

³Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006; Bianco et al., "Exploring the boundary of half-positionality", 2011.

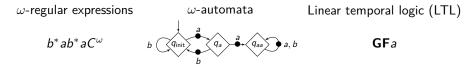
⁴Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

⁶Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2023.

State of the art: Finite-memory determinacy

- **Finite-memory determinacy** is understood for specific objectives,⁷ but few results of wide applicability.⁸
- Central class: ω -regular objectives. Examples with $C = \{a, b\}$:



Theorem^{9,10}

All ω -regular objectives are finite-memory determined.

⁷Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014; Colcombet, Fijalkow, and Horn, "Playing Safe", 2014; Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

⁸Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018; Bouyer, Le Roux, and Thomasset, "Finite-Memory Strategies in Two-Player Infinite Games", 2022.

⁹Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

¹⁰Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

Significance

Consequences of a fine-grained understanding of strategy complexity:

- Decidability of logical theories through FM det. (see monadic second-order logic, linked to ω-regular objectives¹¹).
- Practical synthesis problems through FM det. (see, e.g., LTL specifications¹²).
- At the core of algorithms to **solve** games (see, e.g., *parity games*¹³).
- Controllers as **compact** as possible.

¹¹Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

¹²Pnueli, "The Temporal Logic of Programs", 1977.

¹³Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Plan: three results

- Two "theoretical" characterizations of finite-memory determinacy:
 - I. Reduction to **simpler arenas**.
 - II. Link with automaton representation.
- III. One "effective" characterization to compute small memory structures; focus on ω-regular objectives.

Joint works with P. Bouyer, A. Casares, N. Fijalkow, S. Le Roux, Y. Oualhadj, M. Randour.

I. Reduction to **simpler arenas**

Reduction to simpler arenas

One-to-two-player memoryless lift (finite arenas)¹⁴

Let $W \subseteq C^{\omega}$ be an objective. If

- in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has memoryless winning strategies,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has memoryless winning strategies, then both players have memoryless winning strategies in **two-player** arenas.

Strategy complexity does not increase when an opponent is added! Easy to recover **memoryless determinacy** of, e.g., **parity**¹⁵ and **mean-payoff**¹⁶ objectives.

What about finite-memory determinacy?

¹⁴Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁵Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

¹⁶Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What about finite-memory determinacy?

- Counterexample to a one-to-two-player lift for FM determinacy (2).
- In the counterexample, **the size of the memory depends** on the size of the one-player **arenas**. **Motivates the restriction to**...

Arena-independent finite memory

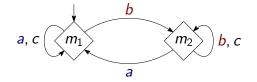
An objective is arena-independent finite-memory determined if

there exists a memory structure \mathcal{M} such that for all arenas \mathcal{A} , strategies based on \mathcal{M} suffice to win in \mathcal{A} .

- Requires **chromatic** memory structures.
- Still holds for ω-regular objectives!
- One-to-two-player lift works!

$$C = \{a, b, c\},\$$
$$W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ ly often and } b \text{ is seen } \infty \text{ ly often} \}$$

This memory structure actually suffices in all arenas!



 \rightsquigarrow *W* is **arena-independent** finite-memory determined.

One-to-two-player finite-memory lift

One-to-two-player FM lift [Bouyer, Le Roux, Oualhadj, Randour, V., 2022]¹⁷

Let $W \subseteq C^\omega$ be an objective and $\mathcal{M}_1, \mathcal{M}_2$ be memory structures. If

• in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has winning strategies based on \mathcal{M}_1 ,

• in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has winning strategies based on \mathcal{M}_2 , then both players have winning strategies based on $\mathcal{M}_1 \otimes \mathcal{M}_2$ in **two-player** arenas.

 ¹⁷Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.
 Strategy Complexity of Zero-Sum Games on Graphs
 Pierre Vandenhove
 20 / 38

One-to-two-player lifts

When does strategy complexity in two-player zero-sum games reduce to strategy complexity in **one-player** games?

Arenas \ Str. comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite	[GZ05] ¹⁸	[BLORV22] ¹⁹	[Koz22] ²⁰
Infinite	[CN06] ²¹	[BRV23] ²²	
Finite <i>stochastic</i>	[GZ09] ²³	[BORV21] ²⁴	

Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove

¹⁸Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁹Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.
²⁰Kozachinskiy, "One-To-Two-Player Lifting for Mildly Growing Memory", 2022.

²¹For prefix-independent objectives; Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

²²Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

²³Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

²⁴Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

II. Link with automaton representation

Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove

Second reduction: Link with automaton representation

Let $W \subseteq C^{\omega}$ be an objective.

(Almost) Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \iff yz \in W$.

I.e., x and y have the same winning continuations; as good as each other.

Properties

- If W is ω -regular, then \sim_W has finitely many equivalence classes.
- There is a DFA S_W "**prefix classifier**" associated with \sim_W .

 \mathcal{S}_W might not "recognize" the objective (\neq languages of *finite* words)...

Two examples

 \ldots but there is a *decomposition* with **prefix classifier** \times **memory structure**.

Let $C = \{a, b\}$. **Prefix classifier** S_W Objective Sufficient memory $W = b^* a b^* a C^{\omega}$ а а W = "*a* and *b* ∞ ly often" а

From memory to automaton

Let $W \subseteq C^{\omega}$ be an objective.

Theorem [Bouyer, Randour, V., 2023]²⁵

If a finite memory structure ${\cal M}$ suffices to win in $\mbox{infinite}$ arenas for both players, then

W is recognized by a *parity automaton* ($S_W \otimes M, p$).

In particular,

W is arena-independent finite-memory determined over infinite arenas

W is ω -regular.

Generalizes [CN06]²⁶ (prefix-independent, memoryless case).

²⁵Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

²⁶Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Up to now

Summary

Two characterizations to help study kinds of finite-memory determinacy.

Limits

Few hypotheses, but...

- not fully effective;
- in general, no tight memory requirements for **each** player.

III. Effective characterization

First: a well-studied case

For $\mathcal{F} \subseteq 2^{\mathcal{C}}$, objective Muller(\mathcal{F}) is the set of words whose set of colors seen infinitely often is in \mathcal{F} .

Examples with $C = \{a, b\}$:

- $Muller(\{\{a\}, \{a, b\}\}) = \infty$ ly many a",
- Muller({ $\{a, b\}$ }) = " ∞ ly many *a* and ∞ ly many *b*".

Memory requirements of Muller objectives

Series of papers between 1982 and 1998,^{27,28,29,30} ending with a precise characterization and an algorithm.³¹

 \rightsquigarrow **Upper bound** on memory requirements for all ω -regular objectives!

²⁷Gurevich and Harrington, "Trees, Automata, and Games", 1982.

²⁸Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

²⁹Klarlund, "Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata", 1994.

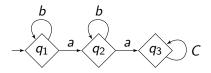
³⁰Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

³¹Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Why an upper bound?

Let $C = \{a, b\}$, $W = b^* a b^* a C^{\omega}$ (\approx seeing a two or more times). How to use results about **Muller objectives**?

W is not directly an objective Muller(\mathcal{F}) with $\mathcal{F} \subseteq 2^C$ \rightsquigarrow needs an **automaton structure**.



 $\rightsquigarrow W = \mathsf{Muller}(\{\{q_3\}\}).$

Using [DJW97],³² we need 1 memory state... ... **after** augmenting the arenas with the automaton, so **upper bound of** 3 **states of memory**.

But 1 memory state suffices for winning strategies!

³²Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Other direction: Regular objectives

Missing pieces

Alternative quest: objectives where "finite prefixes matter".

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set C^ω \ LC^ω.

Expressible as standard deterministic finite automata.

Question

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives **in any arena**. Compute **minimal** ones.

Ideas

- A DFA recognizing the language *L*, taken as a memory structure, always suffices for both players
 (≈ usual approach: taking the product of the arena and the DFA).
- But can be much **smaller** in general!
- Properties linked to the Myhill-Nerode congruence.

I explain one of these properties here.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

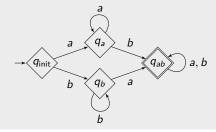
Comparing prefixes

For $x, y \in C^*$, $x \preceq_W y$ if for all $z \in C^{\omega}$, $xz \in W \Longrightarrow yz \in W$.

I.e., y has more winning continuations than x; better situation.

Example

Let W be the regular **reachability** objective induced by this DFA.



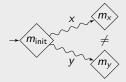
E.g.,
$$\varepsilon \prec_W a$$
,
a and *b* are *incomparable* for \preceq_W .

Necessary condition

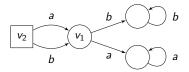
Let $W \subseteq C^{\omega}$ be an objective, $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ be a memory structure.

Lemma

For \mathcal{M} to suffice for \mathcal{P}_1 , \mathcal{M} needs to **distinguish incomparable words**: if $x, y \in C^*$ are incomparable for \preceq_W , then



Why? We can build an arena in which distinguishing x and y is critical.



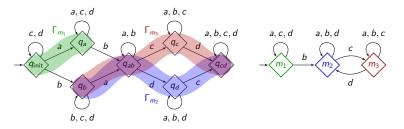
Characterizations

Theorem [Bouyer, Fijalkow, Randour, V., 2023]³³

Let *W* be a **regular safety objective**.

A memory structure ${\mathcal M}$ suffices in all arenas for ${\mathcal P}_1$ if and only if

 ${\mathcal M}$ distinguishes incomparable words.



Close characterization for regular reachability objectives.

³³Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2023.

Computational complexity

Decision problems

Input: An automaton \mathcal{D} inducing the regular **reachability** (or **safety**) objective W and $k \in \mathbb{N}$. **Question**: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Thanks to the "effectiveness" of the properties, we showed that:

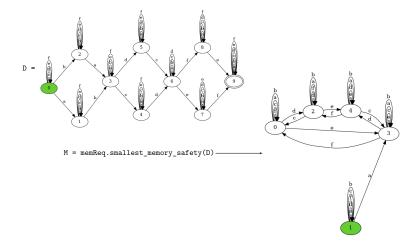
Theorem³⁴

These problems are NP-complete.

³⁴Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

Implementation

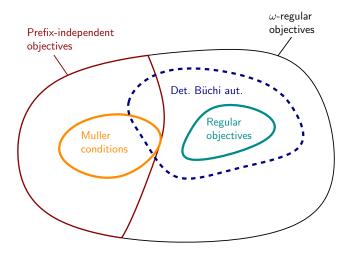
Algorithms³⁵ that find minimal memory structures for regular objectives, using a **SAT solver**.



³⁵https://github.com/pvdhove/regularMemoryRequirements

Overview

Objectives with algorithms to compute **minimal** memory structures:



Only memoryless strategies for deterministic Büchi automata!

Future works

- Automatically compute minimal memory structures for all ω-regular objectives?
- More powerful memory structures.
 - Observing *edges* rather than colors (arena-*dependent*).
 - Well-behaved nondeterminism (*history-determinism*).³⁶
- Practical advantage in knowing the minimal memory structure?

Thanks!

³⁶Boker and Lehtinen, "When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism", 2023.