The Decisiveness Property for Decidable Classes of Stochastic Systems

Pierre Vandenhove

LaBRI, Université de Bordeaux

February 29, 2024 - Liverpool Verification Seminar

LABORATOIRE BORDELAIS DE RECHERCHE EN INFORMATIQUE LCBRR UNIVERSITÉ Me BORDEAUX

Outline

Verification of models:

- stochastic aspects (e.g., Markov chains);
- properties about reachability (Probability of reaching a set? Is some set of states reached with probability 0 or 1?).
 When considering infinite-state systems, often undecidable.

Goal

Identify **decidability frontiers** for reachability in stochastic systems. \rightsquigarrow Follow an approach using the **decisiveness** property.¹

\rightsquigarrow Illustration on stochastic hybrid systems.^2

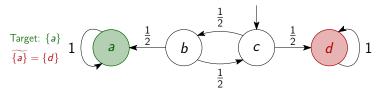
¹Abdulla, Ben Henda, and Mayr, "Decisive Markov Chains", 2007.

²Bouyer, Brihaye, Randour, Rivière, and Vandenhove, "Decisiveness of stochastic systems and its application to hybrid models", 2022.

1. Stochastic systems and decisiveness

Reachability in infinite Markov chains

Let ${\mathcal M}$ be a countable Markov chain.



Let $B \subseteq S$ be target states, $s \in S$ be an initial state.

Goal

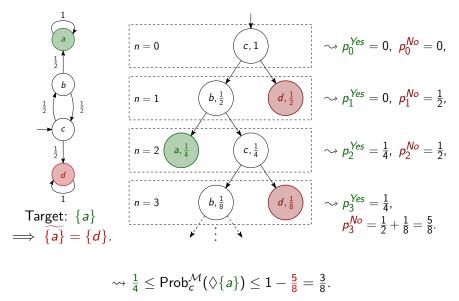
Compute (or approximate) $\operatorname{Prob}_{s}^{\mathcal{M}}(\Diamond B)$.

Solving a linear system may not be advised for infinite Markov chains. Other approach: **incremental unfolding**.

We set

$$\widetilde{B} = \{s \in S \mid \mathsf{Prob}_s^{\mathcal{M}}(\Diamond B) = 0\}.$$

How to approximate the probability of reaching B?



Formally

Approximation procedure (for a given $\varepsilon > 0)^3$

We define

$$\begin{cases} p_n^{\mathsf{Yes}} &= \mathsf{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} B) \\ p_n^{\mathsf{No}} &= \mathsf{Prob}_s^{\mathcal{M}}(\Diamond_{\leq n} \widetilde{B}) \,. \end{cases}$$

For all $n \ge 0$, $p_n^{\text{Yes}} \le \text{Prob}_s^{\mathcal{M}}(\Diamond B) \le 1 - p_n^{\text{No}}$. We stop when

$$(1-p_n^{\mathsf{No}})-p_n^{\mathsf{Yes}}<\varepsilon$$
.

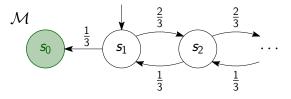
→ Always terminates?

³lyer and Narasimha, "Probabilistic Lossy Channel Systems", 1997.

The Decisiveness Property for Decidable Classes of Stochastic Systems

Counterexample: diverging random walk

The procedure **does not terminate** for this infinite Markov chain:



Initial state: s_1 , target state: $B = \{s_0\} \implies \tilde{B} = \emptyset$. For all n > 0,

•
$$p_n^{\text{Yes}} = \operatorname{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} B) \leq \operatorname{Prob}_{s_1}^{\mathcal{M}}(\Diamond B) = \frac{1}{2}$$

•
$$p_n^{\mathsf{No}} = \mathsf{Prob}_{s_1}^{\mathcal{M}}(\Diamond_{\leq n} \widetilde{B}) = 0.$$

 \rightsquigarrow For all $n \ge 0$, $(1 - p_n^{\mathsf{No}}) - p_n^{\mathsf{Yes}} \ge \frac{1}{2} \dots$

Decisiveness

Let $\mathcal{M} = (S, P)$ be a countable Markov chain and $B \subseteq S$.

Decisiveness⁴

 \mathcal{M} is **decisive** w.r.t. $B \subseteq S$ if for all $s \in S$, $\operatorname{Prob}_{s}^{\mathcal{M}}(\Diamond B \lor \Diamond \widetilde{B}) = 1$.

Theorem⁴

Markov chain \mathcal{M} is **decisive** w.r.t. *B* **if and only if** the approximation procedure **terminates**.

The diverging random walk is **not** decisive w.r.t. $B = \{s_0\}$, because

$$\mathsf{Prob}^{\mathcal{M}}_{s_1}(\Diamond B \lor \Diamond \widetilde{\overset{}{B}}) = \mathsf{Prob}^{\mathcal{M}}_{s_1}(\Diamond B) = rac{1}{2}.$$

⁴Abdulla, Ben Henda, and Mayr, "Decisive Markov Chains", 2007.

Other reachability properties

- Decisiveness makes infinite systems behave "more like finite systems".
- Decisiveness also helps for **almost-sure reachability** and **repeated reachability**.

Example for repeated reachability

Let $\mathcal{M} = (S, P)$ be an infinite Markov chain. If \mathcal{M} is **decisive** w.r.t. $B \subseteq S$, then

$$\operatorname{Prob}_{s}^{\mathcal{M}}(\Box\Diamond B) = 1 \Longleftrightarrow s \models \forall \Box \exists \Diamond B.$$

 \Leftarrow is not true without decisiveness.

Decidability

Along with effectiveness assumptions, e.g.,

- finite branching and computability of successors,
- computability of \widetilde{B} ,

decisiveness is very useful to decide reachability problems.

- Used to show that *probabilistic lossy channel systems*, *probabilistic VASSs* (with *B* upwards closed) are decidable.⁵
- Multiple sufficient conditions for decisiveness in the literature.

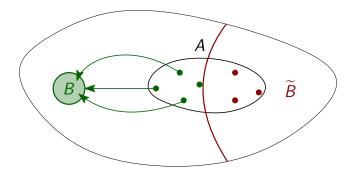
⁵Abdulla, Ben Henda, and Mayr, "Decisive Markov Chains", 2007.

Criterion

An **attractor** is a set $A \subseteq S$ such that for all $s \in S$, $\operatorname{Prob}_{s}^{\mathcal{M}}(\Diamond A) = 1$.

Sufficient condition

A Markov chain with a finite attractor is decisive w.r.t. all sets.



In particular, finite Markov chains are decisive w.r.t. all sets.

Summary for decisiveness

- Useful property for verification of reachability in stochastic systems.
- Hard to check directly, but multiple easier criteria.
- Has been extended to **uncountable** stochastic systems.⁶

Definition

A stochastic transition system is a tuple $\mathcal{T} = (S, \Sigma, \kappa)$ where:

• (S, Σ) is a measurable space, and

• $\kappa \colon S \times \Sigma \to [0,1]$ is a function such that for each $s \in S$, $\kappa(s, \cdot)$ is a distribution over S and for $A \in \Sigma$, $\kappa(\cdot, A)$ is measurable.

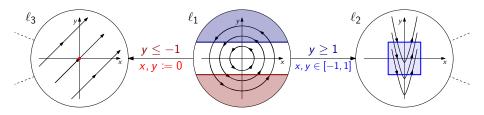
Rest of the talk: application of decisiveness to **hybrid systems** (joint work with P. Bouyer, T. Brihaye, C. Rivière and M. Randour).

⁶Bertrand, Bouyer, Brihaye, and Carlier, "When are stochastic transition systems tameable?", 2018.

2. Stochastic hybrid systems

Hybrid systems

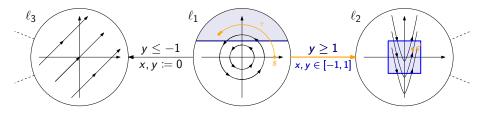
Hybrid systems combine discrete and continuous transitions.



- (L, E) is a finite graph.
- A number *n* of continuous variables
 → states of the system ∈ L × ℝⁿ → uncountable!
- For each $\ell \in L$, a continuous dynamics $\mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}^n$.
- For each edge $e \in E$, a **guard** $\subseteq \mathbb{R}^n$.
- For each edge $e \in E$, a **reset map** $\mathbb{R}^n \to 2^{\mathbb{R}^n}$.

Transitions of hybrid systems

States: $L \times \mathbb{R}^n$ (discrete location \times value of the continuous variables).



A transition combines a **continuous evolution** and a **discrete transition**. Example: state is $s = (\ell_1, (2, 0))$,

- we stay in ℓ_1 for some time $\tau \ge 0$,
- we take an edge whose guard is satisfied,
- we take a value among the possible **resets**, e.g. $s' = (\ell_2, (\frac{1}{2}, \frac{1}{2}))$.

Decidable hybrid systems

Undecidable classes

The reachability problem in hybrid systems is undecidable:

- already with variables using **two** linear rates ($\dot{x} \in \{a, b\}$ with $a \neq b$),⁷
- in a *robust* fashion.⁸

Decidable classes: trade-off between dynamics and resets.

- Timed automata: $\dot{x} = 1$, x := 0.9
- Rectangular automata: arbitrary linear dynamics (ẋ ∈ Z), but reset whenever change in dynamics.¹⁰
- **O-minimal** hybrid systems: rich dynamics, but **all variables** have to be "**strongly reset**" at every discrete transition.¹¹

⁷Alur, Courcoubetis, et al., "The Algorithmic Analysis of Hybrid Systems", 1995.

⁸Henzinger and Raskin, "Robust Undecidability of Timed and Hybrid Systems", 2000.

⁹Alur and Dill, "A Theory of Timed Automata", 1994.

¹⁰Henzinger, Kopke, Puri, and Varaiya, "What's Decidable about Hybrid Automata?", 1998.

¹¹Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.

The Decisiveness Property for Decidable Classes of Stochastic Systems

Adding stochasticity

Hybrid systems are qualitative; we want a stochastic model here. We replace the three sources of nondeterminism:

- waiting time from a given state,
- edge choice, and
- choice of a reset value
- with probability distributions.

→ Stochastic hybrid systems (SHSs)

Undecidability

Undecidability of reachability for SHSs

Given an SHS \mathcal{H} , an initial state and a target set $B \subseteq L \times \mathbb{R}^n$, the **reachability problems**

- $\operatorname{Prob}_{\mu}^{\mathcal{H}}(\Diamond B) = 1?$
- $\mathsf{Prob}^{\mathcal{H}}_{\mu}(\Diamond B) = 0?$
- is a value ε -close to $\operatorname{Prob}_{\mu}^{\mathcal{H}}(\Diamond B)$?

are undecidable.

 \rightsquigarrow inspired from an undecidability proof for hybrid systems.^{12}

Goal

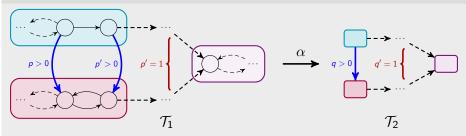
Find a setting in which reachability is decidable.

¹²Henzinger, Kopke, Puri, and Varaiya, "What's Decidable about Hybrid Automata?", 1998.

Reachability problems in stochastic systems

To deal with an uncountable number of states \rightsquigarrow "finite abstraction".

Abstraction of a stochastic hybrid system



• **Abstraction** whenever $p > 0 \iff q > 0$.

• For almost-sure reachability: an abstraction is sound if $\operatorname{Prob}^{\mathcal{T}_1}(\Diamond \alpha^{-1}(B)) = 1 \iff \operatorname{Prob}^{\mathcal{T}_2}(\Diamond B) = 1.$

Decidable classes for reachability

Hybrid systems: existence of a finite abstraction

- Timed automata (*region graph*)¹³
- Rectangular hybrid systems¹⁴
- O-minimal hybrid systems¹⁵

 \rightsquigarrow Decidability is a by-product of **a finite abstraction**.

Stochastic HSs: existence of a finite and sound abstraction

- Single-clock stochastic timed automata¹⁶
- Reactive stochastic timed automata¹⁷

→ Decidability is a by-product of a sound and finite abstraction.

The Decisiveness Property for Decidable Classes of Stochastic Systems

P. Vandenhove

¹³Alur and Dill, "A Theory of Timed Automata", 1994.

¹⁴Henzinger, Kopke, Puri, and Varaiya, "What's Decidable about Hybrid Automata?", 1998.

¹⁵Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.

¹⁶Bertrand, Bouyer, Brihaye, Menet, et al., "Stochastic Timed Automata", 2014.

¹⁷Bertrand, Bouyer, Brihaye, and Carlier, "When are stochastic transition systems tameable?", 2018.

Soundness vs. decisiveness

Summary: properties that help for decidability are

• decisiveness,

• the existence of a **sound and finite abstraction**.

They are strongly **linked**.

Let \mathcal{T}_2 be an abstraction of \mathcal{T}_1 through function α .

Lemma¹⁸

- If \mathcal{T}_1 is **decisive**, then α is a **sound** abstraction.
- If α is **sound** and \mathcal{T}_2 is decisive, then \mathcal{T}_1 is **decisive**.

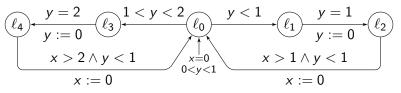
¹⁸Bertrand, Bouyer, Brihaye, and Carlier, "When are stochastic transition systems tameable?", 2018.

How to make SHSs decidable?

We mentioned three classes of hybrid systems with finite abstraction:

- Timed automata,
- Rectangular hybrid systems,
- O-minimal hybrid systems with strong resets.

Which ideas could lead to a sound abstraction for stochastic HSs?



Stochastic timed automaton (simple dynamics and resets), simple guards, rectangular.¹⁹

Not decisive (w.r.t. $\{\ell_2\} \times \mathbb{R}^2$)! So not the first two...

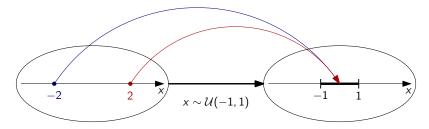
¹⁹Bertrand, Bouyer, Brihaye, Menet, et al., "Stochastic Timed Automata", 2014.

How to make SHSs decidable? Strong resets

We restrict our focus to SHSs with **strong resets**.²⁰

Strong reset = reset that does not depend on the value of the variables.

Example: x follows a uniform dist. in [x - 1, x + 1] is not a strong reset. x follows a uniform distribution in [-1, 1] is a strong reset.



Frequent idea in the literature about hybrid systems.^{21,22}

²⁰Lafferriere, Pappas, and Sastry, "O-Minimal Hybrid Systems", 2000.

²²Gentilini, "Reachability Problems on Extended O-Minimal Hybrid Automata", 2005.

The Decisiveness Property for Decidable Classes of Stochastic Systems

P. Vandenhove

²¹Bertrand, Bouyer, Brihaye, and Markey, "Quantitative Model-Checking of One-Clock Timed Automata under Probabilistic Semantics", 2008.

In non-stochastic hybrid systems,

strong resets \implies finite abstraction.

Proof idea: the classical "bisimulation algorithm" terminates.

- Here, we want a **sound** abstraction.
- We can show this by proving **decisiveness of strongly-reset SHSs**.
- However, the previous criteria (e.g., finite attractor) do not hold here.

Generalized decisiveness criterion

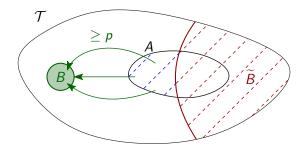
Proposition

Let \mathcal{T} be an stochastic transition system with an **attractor** $A \subseteq S$ and $B \subseteq S$ a set of states.

If there exists p > 0 such that

$$\forall s \in A \cap (\widetilde{B})^{c}, \operatorname{Prob}_{s}^{\mathcal{T}}(\Diamond B) \geq p$$
,

then \mathcal{T} is **decisive** w.r.t. B.

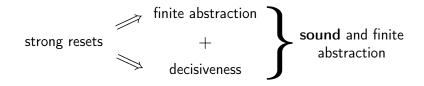


Consequences of strong resets

Proposition

A stochastic hybrid system with only strong resets

- has a finite abstraction (classic proof, bisimulation algorithm),
- is **decisive** w.r.t. any set of states.



→ Reachability is **decidable when the abstraction is computable**!

 \rightsquigarrow "Only strong resets" can be generalized to "one strong reset per cycle".

Final piece: When is the abstraction computable?

- The different components (dynamics, guards...) are definable in an structure with decidable theory (such as R_{alg} = ⟨ℝ, <, +, ·, 0, 1⟩).
- Suffices for nondeterministic HSs, but not stochastic ones: probabilities may not be definable! E.g., x → ¹/_x is definable in ℝ_{alg}, but

$$\int_1^t \frac{1}{x} \mathrm{d}x = \log(t)$$

is not.

How to proceed?

Final piece: o-minimal structures

 $\mathbb{R}_{\mathsf{alg}} = \langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$ is not only decidable but also *o-minimal*.

Lemma²³

In an *o-minimal* structure, for a definable set $A \subseteq \mathbb{R}^n$,

$$\lambda(A) > 0 \iff \operatorname{int}(A) \neq \emptyset,$$

where λ is the Lebesgue measure.

So we restrict the probability distributions to ones **equivalent to the Lebesgue measure** on a **definable set**.

~> Abstraction is computable!

Note: $\mathbb{R}_{exp} = \langle \mathbb{R}, <, +, \cdot, 0, 1, e^x \rangle$ is also o-minimal, but decidability is open.

²³Kaiser, "First order tameness of measures", 2012.

The Decisiveness Property for Decidable Classes of Stochastic Systems

Summing up

Putting it all together

For stochastic hybrid systems with

- one strong reset per cycle,
- every component (resets, guards, dynamics) definable in a decidable and o-minimal theory (e.g., \mathbb{R}_{alg}),
- distributions either finite or equivalent to the Lebesgue measure,

almost-sure reachability problems are decidable.

Ongoing work: POMDPs

Adapting the **reset** ideas to **partially observable Markov decision processes**, a large class of undecidable infinite stochastic systems. Main change: there is a "**control**" part!

Thanks!