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Outline

Verification of models:
• stochastic aspects (e.g., Markov chains);

• properties about reachability (Probability of reaching a set? Is some
set of states reached with probability 0 or 1?).
When considering infinite-state systems, often undecidable.

Goal
Identify decidability frontiers for reachability in stochastic systems.
 Follow an approach using the decisiveness property.1

 Illustration on stochastic hybrid systems.2

1Abdulla, Ben Henda, and Mayr, “Decisive Markov Chains”, 2007.
2Bouyer, Brihaye, Randour, Rivière, and Vandenhove, “Decisiveness of stochastic systems and its application to hybrid

models”, 2022.
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1. Stochastic systems and
decisiveness
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Reachability in infinite Markov chains
LetM be a countable Markov chain.
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Let B ⊆ S be target states, s ∈ S be an initial state.

Goal
Compute (or approximate) ProbMs (♦B).

Solving a linear system may not be advised for infinite Markov chains.
Other approach: incremental unfolding.
We set

B̃ = {s ∈ S | ProbMs (♦B) = 0} .
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How to approximate the probability of reaching B?
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Formally

Approximation procedure (for a given ε > 0)3

We define {
pYes

n = ProbMs (♦≤n B)
pNo

n = ProbMs (♦≤n B̃) .

For all n ≥ 0, pYes
n ≤ ProbMs (♦B) ≤ 1− pNo

n .
We stop when

(1− pNo
n )− pYes

n < ε .

 Always terminates?

3Iyer and Narasimha, “Probabilistic Lossy Channel Systems”, 1997.
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Counterexample: diverging random walk

The procedure does not terminate for this infinite Markov chain:
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Initial state: s1, target state: B = {s0} =⇒ B̃ = ∅.
For all n ≥ 0,
• pYes

n = ProbMs1 (♦≤n B) ≤ ProbMs1 (♦B) = 1
2 .

• pNo
n = ProbMs1 (♦≤n B̃) = 0.

 For all n ≥ 0, (1− pNo
n )− pYes

n ≥ 1
2 . . .
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Decisiveness

LetM = (S,P) be a countable Markov chain and B ⊆ S.

Decisiveness4

M is decisive w.r.t. B ⊆ S if for all s ∈ S, ProbMs (♦B ∨ ♦B̃) = 1.

Theorem4

Markov chainM is decisive w.r.t. B if and only if the approximation
procedure terminates.

The diverging random walk is not decisive w.r.t. B = {s0}, because

ProbMs1 (♦B ∨ ♦B̃) = ProbMs1 (♦B) = 1
2 .

4Abdulla, Ben Henda, and Mayr, “Decisive Markov Chains”, 2007.
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Other reachability properties

• Decisiveness makes infinite systems behave “more like finite systems”.

• Decisiveness also helps for almost-sure reachability and repeated
reachability.

Example for repeated reachability
LetM = (S,P) be an infinite Markov chain.
IfM is decisive w.r.t. B ⊆ S, then

ProbMs (�♦B) = 1⇐⇒ s |= ∀�∃♦B.

⇐= is not true without decisiveness.
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Decidability

Along with effectiveness assumptions, e.g.,
• finite branching and computability of successors,

• computability of B̃,
decisiveness is very useful to decide reachability problems.

• Used to show that probabilistic lossy channel systems, probabilistic
VASSs (with B upwards closed) are decidable.5

• Multiple sufficient conditions for decisiveness in the literature.

5Abdulla, Ben Henda, and Mayr, “Decisive Markov Chains”, 2007.
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Criterion

An attractor is a set A ⊆ S such that for all s ∈ S, ProbMs (♦A) = 1.

Sufficient condition
A Markov chain with a finite attractor is decisive w.r.t. all sets.

A

B B̃

In particular, finite Markov chains are decisive w.r.t. all sets.
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Summary for decisiveness

• Useful property for verification of reachability in stochastic systems.

• Hard to check directly, but multiple easier criteria.

• Has been extended to uncountable stochastic systems.6

Definition
A stochastic transition system is a tuple T = (S,Σ, κ) where:
• (S,Σ) is a measurable space, and

• κ : S × Σ→ [0, 1] is a function such that for each s ∈ S,
κ(s, ·) is a distribution over S and for A ∈ Σ, κ(·,A) is measurable.

Rest of the talk: application of decisiveness to hybrid systems (joint work
with P. Bouyer, T. Brihaye, C. Rivière and M. Randour).

6Bertrand, Bouyer, Brihaye, and Carlier, “When are stochastic transition systems tameable?”, 2018.
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2. Stochastic hybrid systems
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Hybrid systems
Hybrid systems combine discrete and continuous transitions.

`1 `2`3
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yy

x

y ≤ −1
x , y := 0

y ≥ 1

x , y ∈ [−1, 1]

• (L,E ) is a finite graph.
• A number n of continuous variables
 states of the system ∈ L× Rn  uncountable!
• For each ` ∈ L, a continuous dynamics Rn × R+ → Rn.
• For each edge e ∈ E , a guard ⊆ Rn.
• For each edge e ∈ E , a reset map Rn → 2Rn .
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Transitions of hybrid systems

States: L× Rn (discrete location × value of the continuous variables).

`1 `2`3

y ≤ −1
x , y := 0

y ≥ 1

x , y ∈ [−1, 1]

τ

y ≥ 1
s

s ′

x , y ∈ [−1, 1]

A transition combines a continuous evolution and a discrete transition.
Example: state is s = (`1, (2, 0)),
• we stay in `1 for some time τ ≥ 0,
• we take an edge whose guard is satisfied,
• we take a value among the possible resets, e.g. s ′ = (`2, (12 ,

1
2)).
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Decidable hybrid systems
Undecidable classes
The reachability problem in hybrid systems is undecidable:
• already with variables using two linear rates (ẋ ∈ {a, b} with a 6= b),7

• in a robust fashion.8

Decidable classes: trade-off between dynamics and resets.

• Timed automata: ẋ = 1, x := 0.9

• Rectangular automata: arbitrary linear dynamics (ẋ ∈ Z),
but reset whenever change in dynamics.10

• O-minimal hybrid systems: rich dynamics, but all variables have to
be “strongly reset” at every discrete transition.11

7Alur, Courcoubetis, et al., “The Algorithmic Analysis of Hybrid Systems”, 1995.
8Henzinger and Raskin, “Robust Undecidability of Timed and Hybrid Systems”, 2000.
9Alur and Dill, “A Theory of Timed Automata”, 1994.
10Henzinger, Kopke, Puri, and Varaiya, “What’s Decidable about Hybrid Automata?”, 1998.
11Lafferriere, Pappas, and Sastry, “O-Minimal Hybrid Systems”, 2000.
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Adding stochasticity

Hybrid systems are qualitative; we want a stochastic model here.
We replace the three sources of nondeterminism:
• waiting time from a given state,
• edge choice, and
• choice of a reset value

with probability distributions.

 Stochastic hybrid systems (SHSs)
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Undecidability

Undecidability of reachability for SHSs
Given an SHS H, an initial state and a target set B ⊆ L× Rn,
the reachability problems
• ProbHµ (♦B) = 1?
• ProbHµ (♦B) = 0?
• is a value ε-close to ProbHµ (♦B)?

are undecidable.

 inspired from an undecidability proof for hybrid systems.12

Goal
Find a setting in which reachability is decidable.

12Henzinger, Kopke, Puri, and Varaiya, “What’s Decidable about Hybrid Automata?”, 1998.
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Reachability problems in stochastic systems

To deal with an uncountable number of states  “finite abstraction”.

Abstraction of a stochastic hybrid system

· · ·

· · ·

· · ·

· · ·

· · ·

T1

α

T2

· · ·

· · ·

p > 0 p′ > 0 q > 0p′ = 1 q′ = 1

• Abstraction whenever p > 0⇐⇒ q > 0.

• For almost-sure reachability: an abstraction is sound if
ProbT1(♦α−1(B)) = 1⇐⇒ ProbT2(♦B) = 1 .
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Decidable classes for reachability

Hybrid systems: existence of a finite abstraction
• Timed automata (region graph)13
• Rectangular hybrid systems14
• O-minimal hybrid systems15

 Decidability is a by-product of a finite abstraction.

Stochastic HSs: existence of a finite and sound abstraction
• Single-clock stochastic timed automata16
• Reactive stochastic timed automata17

 Decidability is a by-product of a sound and finite abstraction.
13Alur and Dill, “A Theory of Timed Automata”, 1994.
14Henzinger, Kopke, Puri, and Varaiya, “What’s Decidable about Hybrid Automata?”, 1998.
15Lafferriere, Pappas, and Sastry, “O-Minimal Hybrid Systems”, 2000.
16Bertrand, Bouyer, Brihaye, Menet, et al., “Stochastic Timed Automata”, 2014.
17Bertrand, Bouyer, Brihaye, and Carlier, “When are stochastic transition systems tameable?”, 2018.
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Soundness vs. decisiveness

Summary: properties that help for decidability are
• decisiveness,

• the existence of a sound and finite abstraction.

They are strongly linked.
Let T2 be an abstraction of T1 through function α.

Lemma18

• If T1 is decisive, then α is a sound abstraction.

• If α is sound and T2 is decisive, then T1 is decisive.

18Bertrand, Bouyer, Brihaye, and Carlier, “When are stochastic transition systems tameable?”, 2018.
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How to make SHSs decidable?
We mentioned three classes of hybrid systems with finite abstraction:
• Timed automata,
• Rectangular hybrid systems,
• O-minimal hybrid systems with strong resets.

Which ideas could lead to a sound abstraction for stochastic HSs?

`0

x=0
0<y<1

`1 `2`3`4
y < 1 y = 1

y := 0
x > 1 ∧ y < 1

x := 0

1 < y < 2y = 2
y := 0
x > 2 ∧ y < 1

x := 0
Stochastic timed automaton (simple dynamics and resets), simple guards,
rectangular.19

Not decisive (w.r.t. {`2} × R2)! So not the first two...

19Bertrand, Bouyer, Brihaye, Menet, et al., “Stochastic Timed Automata”, 2014.
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How to make SHSs decidable? Strong resets

We restrict our focus to SHSs with strong resets.20
Strong reset = reset that does not depend on the value of the variables.

Example: x follows a uniform dist. in [x − 1, x + 1] is not a strong reset.
x follows a uniform distribution in [−1, 1] is a strong reset.

x x−2 2
x ∼ U(−1, 1) −1 1

Frequent idea in the literature about hybrid systems.21,22
20Lafferriere, Pappas, and Sastry, “O-Minimal Hybrid Systems”, 2000.
21Bertrand, Bouyer, Brihaye, and Markey, “Quantitative Model-Checking of One-Clock Timed Automata under Probabilistic

Semantics”, 2008.
22Gentilini, “Reachability Problems on Extended O-Minimal Hybrid Automata”, 2005.
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Why strong resets?

In non-stochastic hybrid systems,

strong resets =⇒ finite abstraction.

Proof idea: the classical “bisimulation algorithm” terminates.

• Here, we want a sound abstraction.

• We can show this by proving decisiveness of strongly-reset SHSs.

• However, the previous criteria (e.g., finite attractor) do not hold here.
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Generalized decisiveness criterion

Proposition
Let T be an stochastic transition system with an attractor A ⊆ S
and B ⊆ S a set of states.
If there exists p > 0 such that

∀s ∈ A ∩ (B̃)c ,ProbTs (♦B) ≥ p ,
then T is decisive w.r.t. B.

T

A

B B̃

≥ p
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Consequences of strong resets

Proposition
A stochastic hybrid system with only strong resets
• has a finite abstraction (classic proof, bisimulation algorithm),

• is decisive w.r.t. any set of states.

strong resets
=⇒

=⇒

finite abstraction

decisiveness
{sound and finite

abstraction
+

 Reachability is decidable when the abstraction is computable!
 “Only strong resets” can be generalized to “one strong reset per cycle”.

The Decisiveness Property for Decidable Classes of Stochastic Systems P. Vandenhove 26 / 29



Final piece: When is the abstraction computable?

• The different components (dynamics, guards. . . ) are definable in an
structure with decidable theory (such as Ralg = 〈R, <,+, ·, 0, 1〉).

• Suffices for nondeterministic HSs, but not stochastic ones:
probabilities may not be definable! E.g., x 7→ 1

x is definable in Ralg, but∫ t

1

1
x dx = log(t)

is not.
How to proceed?
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Final piece: o-minimal structures

Ralg = 〈R, <,+, ·, 0, 1〉 is not only decidable but also o-minimal.

Lemma23

In an o-minimal structure, for a definable set A ⊆ Rn,

λ(A) > 0⇐⇒ int(A) 6= ∅,

where λ is the Lebesgue measure.

So we restrict the probability distributions to ones equivalent to the
Lebesgue measure on a definable set.

 Abstraction is computable!

Note: Rexp = 〈R, <,+, ·, 0, 1, ex 〉 is also o-minimal, but decidability is open.

23Kaiser, “First order tameness of measures”, 2012.
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Summing up
Putting it all together
For stochastic hybrid systems with
• one strong reset per cycle,

• every component (resets, guards, dynamics) definable in a decidable
and o-minimal theory (e.g., Ralg),

• distributions either finite or equivalent to the Lebesgue measure,
almost-sure reachability problems are decidable.

Ongoing work: POMDPs
Adapting the reset ideas to partially observable Markov decision
processes, a large class of undecidable infinite stochastic systems. Main
change: there is a “control” part!

Thanks!
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