Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove^{1,2}

¹F.R.S.-FNRS & UMONS - Université de Mons, Belgium ²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

July 3, 2023 – Verification Seminar, Liverpool

Overview

Strategy complexity

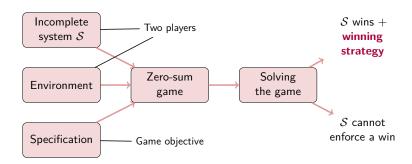
Understand if **complex** strategies must be used, or if **simple** strategies suffice to achieve an **objective** in presence of an **antagonistic** environment.

Aim of the talk

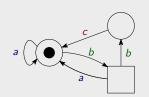
- Motivate the question of strategy complexity.
- Present the state of the art.
- Review recent results on the topic (part of my PhD thesis).

Context: synthesis

- An (incomplete, reactive) system,
- living in an (uncontrollable) environment,
- with a purpose/specification.
- → Modeling through a zero-sum game.



Zero-sum turn-based games on graphs



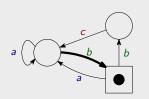
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum **turn-based** games on graphs



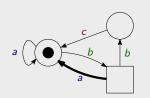
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs



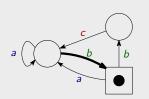
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 infinite word w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum **turn-based** games on graphs



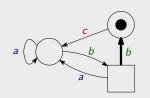
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 infinite word w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs



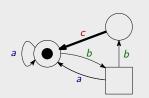
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 ⇒ infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs



- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 ∴ infinite word w = babbc... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Strategy complexity

- Given a game and an initial vertex

 → who can win?
- To decide it, exhibit a winning strategy of a player.
- Issues:
 - ▶ strategies $\sigma \colon E^* \to E$ may not have a finite representation;
 - there are infinitely many of them.

Strategy complexity

Given an **objective**, understand if **simple** strategies suffice to win, or if **complex** strategies are required to win (when possible).

Desirable properties:

- winning strategies use bounded information (finite representation!);
- computable bounds on this information (finite number of strategies!).

Simple strategies

Memoryless strategies

A strategy is **memoryless** if it makes decisions based only on the **current** arena vertex $(\sigma \colon V_i \to E)$.

Finite-memory strategies

A strategy is **finite-memory** if it makes decisions based on

- the current arena vertex, and
- the current state of a finite memory structure.

Memory structures

Memory structures

A **memory structure** is a tuple $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ where M is a finite set of states, $m_{\text{init}} \in M$, and $\alpha_{\text{upd}} \colon M \times C \to M$.

Given
$$\mathcal M$$
 and an arena $\mathcal A=(V_1,V_2,E)$, a *next-action function* $lpha_{\mathsf{nxt}}\colon V_i \times M \to E$

defines a strategy of \mathcal{P}_i .

Remark

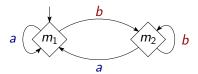
Memory structures are **chromatic**: only observe colors. Given $A = (V_1, V_2, E)$, slightly more general¹ to have

$$\alpha_{\sf upd} \colon M \times E \to M$$
.

Still, we consider here **chromatic** structures (additional motivation later).

¹Casares, "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

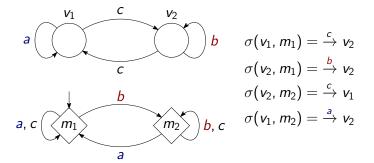
E.g., chromatic structure to remember whether a or b was last seen:



Memoryless strategies use memory structure

$$C = \{a, b, c\},\$$

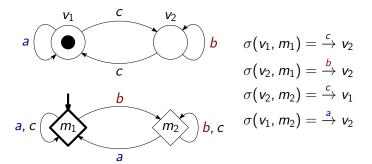
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

$$C = \{a, b, c\},\$$

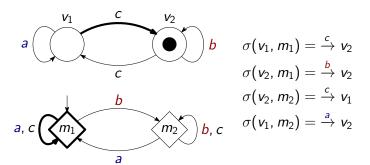
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do not suffice...

$$C = \{a, b, c\},\$$

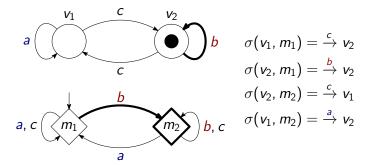
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do not suffice...

$$C = \{a, b, c\},$$

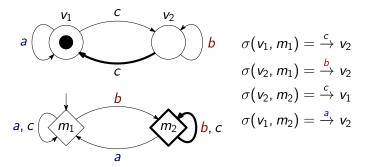
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

$$C = \{a, b, c\},$$

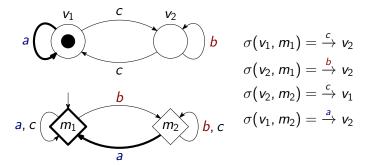
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do not suffice...

Finite-memory determinacy

Memoryless determinacy

An **objective** is **memoryless-determined** if **in all arenas**, **memoryless** strategies suffice **for both players**.

Finite-memory determinacy

An objective is finite-memory-determined if in all arenas, finite-memory strategies suffice for both players.

Various definitions depending on

- the class of arenas considered (finite, infinite, finitely branching...),
- whether we focus on **both** players or a **single** player.

State of the art: Memoryless determinacy

Many "classical" objectives are **memoryless-determined**: reachability, Büchi, parity, energy, mean payoff, discounted sum. . .

Memoryless determinacy is well-understood:

- Sufficient conditions for both players, 2 for a single player. 3
- Characterizations for both players over finite⁴/infinite⁵ arenas, for a single player over infinite arenas.⁶

²Gimbert and Zielonka, "When Can You Play Positionally?", 2004; Aminof and Rubin, "First-cycle games", 2017,

³Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006; Bianco et al., "Exploring the boundary of half-positionality", 2011.

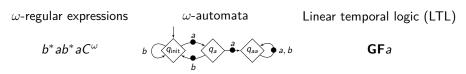
 $^{^4\}mathrm{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

⁶Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2023.

State of the art: Finite-memory determinacy

- Finite-memory determinacy is understood for specific objectives,⁷ but few results of wide applicability.⁸
- Central class: ω -regular objectives. Examples with $C = \{a, b\}$:



Theorem^{9,10}

All ω -regular objectives are finite-memory-determined.

⁷Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014; Colcombet, Fijalkow, and Horn, "Playing Safe", 2014; Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

⁸Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018; Bouyer, Le Roux, and Thomasset, "Finite-Memory Strategies in Two-Player Infinite Games", 2022.

⁹Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

 $^{^{10}}$ Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

Significance

Consequences of a fine-grained understanding of strategy complexity:

- **Decidability** of logical theories through FM det. (see *monadic* second-order logic, linked to ω -regular objectives¹¹).
- Practical synthesis problems through FM det. (see, e.g., LTL specifications¹²).
- At the core of algorithms to solve games (see, e.g., parity games¹³).
- Controllers as **compact** as possible.

 $^{^{11}\}mathrm{B\"{u}chi}$ and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

¹²Pnueli, "The Temporal Logic of Programs", 1977.

¹³Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Two directions for results

I. General conditions for finite-memory determinacy

- Few hypotheses on the objectives.
- Understanding the theoretical boundaries of FM determinacy.
- Useful characterizations (two presented here).

II. Computing precise memory requirements

- Algorithms and complexity to compute small memory structures.
- Focus on ω -regular objectives.

Joint works with P. Bouyer, A. Casares, N. Fijalkow, S. Le Roux, Y. Oualhadj, M. Randour; part of my **PhD thesis**. 14, 15, 16, 17

¹⁴Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

¹⁵Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

¹⁶Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

 $^{^{17}}$ Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2022.

I. General conditions for finite-memory determinacy

Extending memoryless determinacy: One-to-two-player lift

One-to-two-player memoryless lift (finite arenas)¹⁸

Let $W \subseteq C^{\omega}$ be an objective. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has memoryless winning strategies,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has memoryless winning strategies, then both players have memoryless winning strategies in **two-player** arenas.

Strategy complexity does not increase when an opponent is added! Easy to recover **memoryless determinacy** of, e.g., **parity**¹⁹ and **mean-payoff**²⁰ objectives.

What about finite-memory determinacy?

¹⁸Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁹Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

 $^{^{20}}$ Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What about finite-memory determinacy?

- Counterexample to a one-to-two-player lift for FM determinacy 🙁.
- In the counterexample, **the size of the memory depends** on the size of the one-player **arenas**. **Motivates the restriction to**...

Arena-independent finite memory

An objective is arena-independent finite-memory determined if

there exists a memory structure \mathcal{M} such that for all arenas \mathcal{A} ,

- strategies based on ${\mathcal M}$ suffice to win in ${\mathcal A}.$
 - Requires chromatic memory structures.
 - Still holds for ω -regular objectives!
 - One-to-two-player lift works!

One-to-two-player finite-memory lift

One-to-two-player finite-memory lift (finite arenas)²¹

Let $W \subseteq C^{\omega}$ be an objective and $\mathcal{M}_1, \mathcal{M}_2$ be memory structures. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has winning strategies based on \mathcal{M}_1 ,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has winning strategies based on \mathcal{M}_2 , then both players have winning strategies based on $\mathcal{M}_1 \otimes \mathcal{M}_2$ in **two-player** arenas.

Strategy Complexity of Zero-Sum Games on Graphs

²¹Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

One-to-two-player lifts

When does strategy complexity in two-player zero-sum games reduce to strategy complexity in one-player games?

Arenas $\Str.$ comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite	[GZ05] ²²	[BLORV22] ²³	[Koz22] ²⁴
Infinite	[CN06] ²⁵	[BRV23] ²⁶	
Finite stochastic	[GZ09] ²⁷	[BORV21] ²⁸	

 $^{^{22}}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²³Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

 $^{^{24}\}mbox{Kozachinskiy},$ "One-To-Two-Player Lifting for Mildly Growing Memory", 2022.

²⁵ For prefix-independent objectives; Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

²⁶Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

 $^{^{27}}$ Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

 $^{^{28}} Bouyer,\ Oualhadj,\ et\ al.,\ "Arena-Independent\ Finite-Memory\ Determinacy\ in\ Stochastic\ Games",\ 2021.$

Second reduction: Link with automaton representation

Let $W \subseteq C^{\omega}$ be an objective.

(Almost) Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^\omega$, $xz \in W \iff yz \in W$.

I.e., x and y have the same winning continuations; as good as each other.

Properties

- If W is ω -regular, then \sim_W has finitely many equivalence classes.
- There is a DFA S_W "prefix classifier" associated with \sim_W .

 \mathcal{S}_W might not "recognize" the objective (\neq languages of *finite* words)...

Two examples

 \dots but we found a $\frac{\textit{decomposition}}{\textit{decomposition}}$ with $\frac{\textit{prefix classifier}}{\textit{classifier}} \times \frac{\textit{memory}}{\textit{memory}}$ structure.

Let $C = \{a, b\}.$

Objective	Prefix classifier \mathcal{S}_W	Sufficient memory
$W=b^*ab^*aC^\omega$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rightarrow \bigcirc c$
$W=$ " a and b ∞ ly often"	$\rightarrow \bigcirc c$	a b

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem²⁹

If a finite memory structure ${\mathcal M}$ suffices to win in ${\bf infinite}$ arenas for both players, then

W is recognized by a parity automaton $(S_W \otimes \mathcal{M}, p)$.

In particular,

W is arena-independent finite-memory determined over infinite arenas

W is ω -regular.

Generalizes [CN06]³⁰ (prefix-independent, memoryless case). More precise results for Muller conditions.³¹

 $^{^{29}}$ Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

³⁰Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

 $^{^{31}}$ Casares, Colcombet, and Lehtinen, "On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games". 2022.

Part I: Overview

Summary

Tools, characterizations to help study kinds of finite-memory determinacy.

Limits

Wide applicability of the characterizations, but...

- not fully effective;
- in general, no tight memory requirements for each player.

II. Precise memory requirements of classes of objectives

Well-studied case: Muller conditions

For $\mathcal{F}\subseteq 2^{\mathcal{C}}$, objective Muller(\mathcal{F}) is the set of words whose **set of colors** seen infinitely often is in \mathcal{F} .

Examples with $C = \{a, b\}$:

- Muller($\{\{a\}, \{a, b\}\}\) = \infty$ ly many a,
- Muller($\{\{a,b\}\}\)$ = " ∞ ly many a and ∞ ly many b".

Memory requirements of Muller conditions

Series of papers between 1982 and 1998, ^{32, 33, 34, 35} ending with a precise characterization and an algorithm. ³⁶

 \leadsto **Upper bound** on memory requirements for all ω -regular objectives!

³²Gurevich and Harrington, "Trees, Automata, and Games", 1982.

³³Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

³⁴Klarlund, "Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata", 1994.

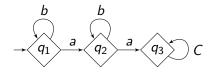
 $^{^{35}}$ Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

 $^{^{36}}$ Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Why an upper bound?

Let $C = \{a, b\}$, $W = b^*ab^*aC^{\omega}$ (\approx seeing a two or more times). How to use results about **Muller conditions**?

W is not directly a Muller condition Muller(\mathcal{F}) with $\mathcal{F} \subseteq 2^C$ \rightsquigarrow needs an **automaton structure**.



 $\rightsquigarrow W = \text{Muller}(\{\{q_3\}\}).$

Using [DJW97],³⁷ we need 1 memory state...

... after augmenting the arenas with the automaton, so upper bound of 3 states of memory.

But 1 memory state suffices for winning strategies!

³⁷Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Other direction: Regular objectives

Missing pieces

Alternative quest: objectives where "finite prefixes matter".

We consider the "simplest" ones.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set $C^{\omega} \setminus LC^{\omega}$.

Expressible as standard deterministic finite automata.

Question

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives in any arena. Compute minimal ones.

Ideas

- A DFA recognizing the language L, taken as a memory structure, always suffices for both players
 (≈ usual approach: taking the product of the arena and the DFA).
- But can be much smaller in general!
- Properties linked to the Myhill-Nerode congruence.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

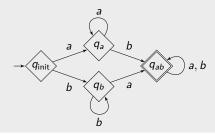
Comparing prefixes

For $x, y \in C^*$, $x \leq_W y$ if for all $z \in C^\omega$, $xz \in W \Longrightarrow yz \in W$.

I.e., y has more winning continuations than x; better situation.

Example

Let W be the regular **reachability** objective induced by this DFA.



 $\begin{array}{ll} \text{E.g., } \varepsilon \prec_W \text{ a,} \\ \text{a and } \text{b are } \textit{incomparable} \text{ for } \preceq_W. \end{array}$

Necessary condition

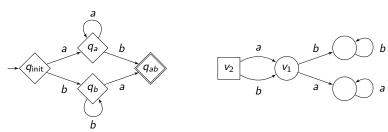
Let $W\subseteq C^{\omega}$ be an objective, $\mathcal{M}=(M,m_{\mathsf{init}},\alpha_{\mathsf{upd}})$ be a memory structure.

Lemma

For \mathcal{M} to suffice for \mathcal{P}_1 , \mathcal{M} needs to **distinguish incomparable words**, i.e.,

if
$$x, y \in C^*$$
 are incomparable for \leq_W , then $\alpha^*_{\sf upd}(m_{\sf init}, x) \neq \alpha^*_{\sf upd}(m_{\sf init}, y)$.

Why? We can build an arena in which distinguishing x and y is critical.



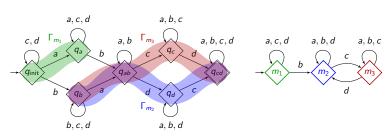
Characterizations

Theorem³⁸

Let W be a **regular safety objective**.

A memory structure ${\mathcal M}$ suffices in all arenas for ${\mathcal P}_1$ if and only if

 $\ensuremath{\mathcal{M}}$ distinguishes incomparable words.



Close characterization for **regular reachability objectives** (requires a property not shown here).

³⁸Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

Computational complexity

Decision problems

Input: An automaton \mathcal{D} inducing the regular **reachability** (or **safety**) objective W and $k \in \mathbb{N}$.

Question: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Thanks to the "effectiveness" of the properties, we showed that:

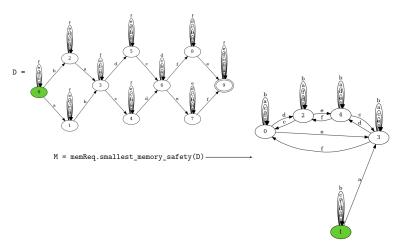
Theorem³⁹

These problems are NP-complete.

³⁹Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

Implementation

Algorithms 40 that find minimal memory structures for regular objectives, using a **SAT solver**.

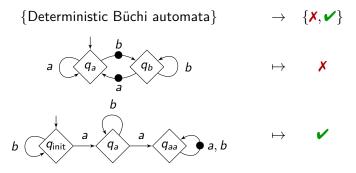


 $^{^{40} {\}tt https://github.com/pvdhove/regularMemoryRequirements}$

Deterministic Büchi automata

Second related work⁴¹

- Objectives from deterministic Büchi automata (more general!).
- Decide whether \mathcal{P}_1 has **memoryless** winning strategies (less general).

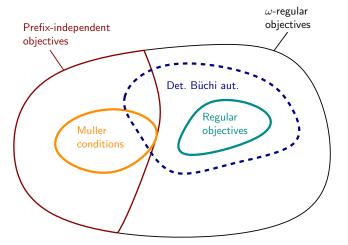


→ Decidable in polynomial time.

⁴¹Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2022.

Part II: Overview

Objectives with algorithms to compute **minimal** memory structures:



Only memoryless strategies for deterministic Büchi automata!

Future works

- More powerful memory structures.
 - Observing edges rather than colors (arena-dependent).
 - ▶ Well-behaved nondeterminism (history-determinism). 42
- Automatically **compute minimal memory structures** for all ω -regular objectives?
- Practical advantage in knowing the minimal memory structure when smaller than the minimal automaton representing the language?

Thanks!

 $^{^{42}}$ Boker and Lehtinen, "When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism", 2023.