Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove^{1,2}

Thesis supervized by Patricia Bouyer¹ and Mickael Randour²

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²F.R.S.-FNRS & UMONS – Université de Mons, Belgium

March 14, 2023 - LMF Seminar

Context

- Present work part of my thesis.
- Thesis **supervised** by...

Mickael Randour. Université de Mons. Belgium

Patricia Bouyer, Université Paris-Saclay, LMF

Thesis defense in Mons at the end of April.

Strategy Complexity of Zero-Sum Games on Graphs

Problem: synthesis

- An (incomplete, *reactive*) system,
- living in an (uncontrollable) environment,
- with a purpose/**specification**.
- \rightsquigarrow Modeling through a zero-sum game.

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction \rightsquigarrow infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 → infinite word w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 → infinite word w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players *P*₁ (○) and *P*₂ (□).
 Infinite interaction
 → infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = babbc ... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

- A **strategy** of a player is a function $\sigma: E^* \to E$.
- A strategy σ of \mathcal{P}_1 is **winning for** W **from** $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.

Strategy complexity

- Given a game and an initial vertex ~> who can win?
- To decide it, exhibit a **winning strategy** of a player.
- Issues:
 - strategies $\sigma \colon E^* \to E$ may not have a finite representation;
 - there are infinitely many of them.

Strategy complexity

Given an **objective**, *when winning is possible*, understand if **simple** strategies suffice to win, or if **complex** strategies are required.

Desirable properties:

- winning strategies can use bounded information (finite representation!);
- computable bounds on this information (finite number of strategies!).

Simple strategies

Memoryless strategies

A strategy is **memoryless** if it makes decisions based only on the **current** arena vertex ($\sigma: V_i \rightarrow E$).

Finite-memory strategies

A strategy is **finite-memory** if it makes decisions based on the current arena vertex **and** the current state of a *memory structure* ($\sigma : V_i \times M \rightarrow E$).

Finite *memory structure* $\mathcal{M} = (M, m_{init} \in M, \alpha_{upd} : M \times C \to M)$. E.g., to remember whether *a* or *b* was last played:

Memoryless strategies use memory structure

 $\rightarrow \bigcirc C$.

Strategy Complexity of Zero-Sum Games on Graphs

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

→ Memoryless strategies do **not** suffice... but **two memory states** do!

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

 \rightsquigarrow Memoryless strategies do **not** suffice... but **two memory states** do!

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

→ Memoryless strategies do **not** suffice... but **two memory states** do!

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

→ Memoryless strategies do **not** suffice... but **two memory states** do!

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

→ Memoryless strategies do **not** suffice... but **two memory states** do!

 $C = \{a, b, c\},\$ $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$

→ Memoryless strategies do **not** suffice... but **two memory states** do!

Finite-memory determinacy

Memoryless determinacy

An objective is memoryless-determined if in all arenas, memoryless strategies suffice for both players.

Finite-memory determinacy

An objective is finite-memory-determined if in all arenas, finite-memory strategies suffice for both players.

Various definitions depending on

- the class of arenas considered (finite, infinite, finitely branching...),
- whether we focus on **both** players or a **single** player.

Strategy Complexity of Zero-Sum Games on Graphs

State of the art: memoryless determinacy

Many "classical" objectives are **memoryless-determined**: reachability, Büchi, parity, energy, mean payoff, discounted sum...

Memoryless determinacy is well-understood:

- Sufficient conditions for both players,¹ for a single player.²
- **Characterizations** for **both** players over finite³/infinite⁴ arenas, for **a single** player over infinite arenas.⁵

¹Gimbert and Zielonka, "When Can You Play Positionally?", 2004; Aminof and Rubin, "First-cycle games", 2017.

²Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006; Bianco et al., "Exploring the boundary of half-positionality", 2011.

³Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

⁴Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

⁵Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

State of the art: finite-memory determinacy

- Finite-memory determinacy is understood for specific objectives,⁶ but few results of wide applicability.⁷
- Central class: ω -regular objectives. Examples with $C = \{a, b\}$:

Theorem^{8,9}

All ω -regular objectives are finite-memory-determined.

⁶Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014; Colcombet, Fijalkow, and Horn, "Playing Safe", 2014; Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

⁷Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018; Bouyer, Le Roux, and Thomasset, "Finite-Memory Strategies in Two-Player Infinite Games", 2022.

⁸Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

⁹Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

Significance

Consequences of a fine-grained understanding of strategy complexity:

- **Decidability** of logical theories through FM det. (see *monadic second-order logic*, linked to ω-regular objectives).
- Practical synthesis problems through FM det. (see, e.g., LTL specifications¹⁰).
- At the core of algorithms to **solve** games (see, e.g., *parity games*¹¹).
- Controllers as **compact** as possible.

¹⁰Pnueli, "The Temporal Logic of Programs", 1977.

¹¹Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

Overview of our contributions

I. General conditions for finite-memory determinacy

- Arbitrary objectives
- Algebraic characterizations of the sufficiency of a memory structure for both players
- Theoretical tools to find memory structures
- Generalizations of memoryless determinacy results

- II. Precise memory requirements of classes of objectives
 - *ω*-regular objectives
 - Observation: memory requirements not settled
 - **1** *Regular* objectives (pprox DFAs)
 - Effective characterization of precise memory structures
 - (Computational) complexity
 - 2 Objectives recognizable by deterministic Büchi automata
 - Effective characterization of "no memory for P₁"
 - Complexity

I. General conditions for finite-memory determinacy

I. General conditions for finite-memory determinacy

- Arbitrary objectives
- Algebraic characterizations of the sufficiency of a memory structure for both players
- Theoretical tools to help find erminac memory structures
 - One-to-two-player lifts
 - 2 Memory structures → automata for the objectives
- Generalizations of memoryless determinacy results

One-to-two-player lift

One-to-two-player memoryless lift (finite arenas)¹²

Let $W \subseteq C^{\omega}$ be an objective. If

- in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has memoryless winning strategies,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has memoryless winning strategies,

then both players have memoryless winning strategies in two-player arenas.

Extremely useful in practice. Very easy to recover **memoryless** determinacy of, e.g., parity¹³ and mean-payoff¹⁴ games.

What about finite-memory determinacy?

¹²Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹³Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

¹⁴Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

• What about finite-memory determinacy?

- Counterexample to a one-to-two-player lift for FM determinacy (2).
- In the counterexample, **the size of the memory depends** on the size of the one-player **arenas**. **Motivates the restriction to**...

Arena-independent memory

An objective has arena-independent finite-memory winning strategies if

there exists a memory structure \mathcal{M} such that for all arenas \mathcal{A} ,

strategies using \mathcal{M} suffice to win in \mathcal{A} .

- Still holds for ω-regular objectives!
- Restriction over finite arenas, not so much over infinite arenas.
- One-to-two-player lift works!

One-to-two-player lifts

When does memory determinacy in two-player zero-sum games reduce to **one-player** memory determinacy?

Arenas $\$ Str. comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite	[GZ05] ¹⁵	[BLORV22] ¹⁶	[Koz22] ¹⁷
Infinite	[CN06] ¹⁸	[BRV23] ¹⁹	
Finite stochastic	[GZ09] ²⁰	[BORV21] ²¹	

By-products of algebraic/language-theoretic characterizations.

Strategy Complexity of Zero-Sum Games on Graphs

¹⁵Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁶Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

¹⁷Kozachinskiy, "One-To-Two-Player Lifting for Mildly Growing Memory", 2022.

¹⁸For prefix-independent objectives; Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

¹⁹Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

²⁰Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

²¹Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

I. General conditions for finite-memory determinacy

- Arbitrary objectives
- Algebraic characterizations of the sufficiency of a memory
- structure for both players

• Theoretical tools to help find memory structures

- One-to-two-player lifts
- Generalizations of memoryless determinacy results

Link with automaton representation

Let $W \subseteq C^{\omega}$ be an objective.

pprox Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \iff yz \in W$.

I.e., x and y have the same winning continuations; as good as each other.

Properties

- If W is ω -regular, then \sim_W has finitely many equivalence classes.
- There is a DFA S_W "prefix classifier" associated with \sim_W .

Might not "recognize" the language (\neq languages of *finite* words)...

2 Two examples

... but we noticed a *decomposition* involving **prefix classifiers** and **memory structures**.

Let $C = \{a, b\}$. Objective **Prefix-classifier** S_W Sufficient memory $W = b^* a b^* a C^{\omega}$ а а W = "a and $b \infty$ ly often"

2 Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a finite memory structure ${\cal M}$ suffices to play optimally in $\ensuremath{\text{infinite}}$ arenas for both players, then

W is recognized by a *parity automaton* ($S_W \otimes M, p$).

 $\implies W$ is ω -regular!

Generalizes [CN06]²² (prefix-independent, memoryless case).

²²Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

Corollary

Characterization

Let W be an objective.

W is **finite-memory-determined** over infinite arenas \iff W is ω -regular.

 \Leftarrow is well-known.^{23,24}

 \implies follows from the previous slide.

²³Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

²⁴Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

Part I: Summary

- Useful **notion** of *arena-independent* FM determinacy.
- General characterizations over finite and infinite arenas.
- Theoretical **tools** to determine memory requirements.
- Central place of ω-regular objectives.

Related publications

- Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR'20 & LMCS) "Games Where You Can Play Optimally with Arena-Independent Finite Memory"
- Bouyer, Randour, V. (STACS'22 & TheoretiCS) "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs"

Limits

Wide applicability, but...

- not fully effective;
- in general, no tight memory requirements for **each** player.

II. Precise memory requirements of classes of objectives

II. Precise memory requirements of classes of objectives ω-regular objectives • **Observation**: memory requirements not settled **1** *Regular* objectives (\approx DFAs) Effective characterization of of classes of objectives precise memory structures Existence of small structures is NP-complete 2 Objectives recognizable by deterministic Büchi automata Effective characterization of "no memory for \mathcal{P}_1 " Decidable in polynomial time

Regular objectives

Well-understood ω -regular objectives: *Muller conditions*, focusing on what is seen **infinitely often**.^{25,26} E.g., $b^*ab^*aC^{\omega}$ is not a Muller condition.

Missing pieces

Orthogonal quest: objectives where "finite prefixes matter".

We consider the "simplest" ones.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set C^ω \ LC^ω.

Expressible as standard deterministic finite automata.

²⁵Gurevich and Harrington, "Trees, Automata, and Games", 1982.

²⁶Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

P. Vandenhove (supervized by P. Bouyer and M. Randour)

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives **in any arena**. Compute **minimal** ones.

Ideas

- A DFA recognizing the language, taken as a memory structure, always suffices for both players.
- But can be much smaller in general!
- Properties linked to the Myhill-Nerode congruence.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

Comparing prefixes

For $x, y \in C^*$, $x \preceq_W y$ if for all $z \in C^{\omega}$, $xz \in W \Longrightarrow yz \in W$.

I.e., y has more winning continuations than x; better situation.

Example

Let W be the regular **reachability** objective induced by this DFA.

E.g., $\varepsilon \prec_W a$, $a \prec_W ab$, *a* and *b* are *incomparable* for \preceq_W .

Necessary condition for the memory

Let $W \subseteq C^{\omega}$ be an objective.

Lemma

A sufficient memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ needs to **distinguish** incomparable words (for \leq_W), i.e.,

if
$$x, y \in C^*$$
 are incomparable for \leq_W ,
then $\alpha^*_{upd}(m_{init}, x) \neq \alpha^*_{upd}(m_{init}, y)$.

Why? (Example) need to make the right decision in this arena.

Characterizations

Theorem

Let *W* be a **regular safety objective**.

A memory structure \mathcal{M} suffices in all arenas for \mathcal{P}_1 if and only if \mathcal{M} distinguishes incomparable words.

Theorem

Let W be a regular reachability objective.

Memory structure \mathcal{M} suffices in all arenas for \mathcal{P}_1 if and only if

 \mathcal{M} distinguishes incomparable words **and** \mathcal{M} distinguishes insufficient progress.

Strategy Complexity of Zero-Sum Games on Graphs

Computational complexity

Decision problems

Input: An automaton \mathcal{D} inducing the regular **reachability** (or **safety**) objective W and $k \in \mathbb{N}$. **Question**: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Thanks to the "effectiveness" of the two properties, we showed that:

Theorem

These problems are NP-complete.

Implementation

Algorithms that find minimal memory structures for regular objectives, using a **SAT solver**.

II. Precise memory requirements of classes of objectives ω-regular objectives **Observation**: memory requirements not settled **1** Regular objectives (\approx DFAs) Effective characterization of of classes of objectives precise memory structures Existence of small structures is NP-complete 2 Objectives recognizable by deterministic Bijchi automata Effective characterization of "no memory for \mathcal{P}_1 " Decidable in polynomial time

Strategy Complexity of Zero-Sum Games on Graphs

2 Deterministic Büchi automata

A deterministic Büchi automaton \mathcal{B} on C

- reads **infinite** words (in C^{ω}),
- accepts words that see infinitely many Büchi transitions

 $\mathcal{L}(\mathcal{B}) = \{ w \in \{a, b\}^{\omega} \mid w \text{ sees } \infty \text{ly many } a \text{ and } \infty \text{ly many } b \}$

Question

Given \mathcal{B} , can \mathcal{P}_1 win without memory for objective $W = \mathcal{L}(\mathcal{B})$? (Is $\mathcal{L}(\mathcal{B})$ half-positional?)

Strategy Complexity of Zero-Sum Games on Graphs

2 Results

Let \mathcal{B} be a **deterministic Büchi automaton**.

Theorem

For objective $W = \mathcal{L}(\mathcal{B})$, \mathcal{P}_1 does not need memory **if and only if**

- all prefixes are comparable for \leq_W ,
- W is progress-consistent, and
- W is recognized by its prefix classifier as a DBA.

Polynomial-time algorithm

Can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

Strategy Complexity of Zero-Sum Games on Graphs

Part II: Summary

- Tools to study memory req. of classes of ω -regular objectives.
- Effective characterizations for DFAs and DBAs.
- Decidability and complexity of the related decision problems.

Related publications

- Bouyer, Fijalkow, Randour, V. (Submitted preprint) "How to Play Optimally for Regular Objectives?"
- Bouyer, Casares, Randour, V. (CONCUR'22) "Half-Positional Objectives Recognized by Deterministic Büchi Automata"

Future works

- (*Part I*) General results for arena-*dependent* memory requirements.
 - Observing *edges* rather than colors in the model.
 - Well-behaved nondeterminism (*history-determinism*).²⁷
- (*Part II*) Automatically compute minimal memory structures for all ω-regular objectives?
- More expressive settings (e.g., stochastic, concurrent,²⁸ or timed games).
- More expressive **strategy models** than finite-state machines (e.g., pushdown²⁹ or register³⁰ automata).

Thanks!

²⁷Boker and Lehtinen, "When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism", 2023.
²⁸Bordais, Bouyer, and Le Roux, "Optimal Strategies in Concurrent Reachability Games", 2022.

²⁹Walukiewicz, "Pushdown Processes: Games and Model-Checking", 2001.

³⁰Exibard et al., "Computability of Data-Word Transductions over Different Data Domains", 2022.

P. Vandenhove (supervized by P. Bouyer and M. Randour)