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Problem: synthesis

• An (incomplete, reactive) system,
• living in an (uncontrollable) environment,
• with a purpose/specification.

 Modeling through a zero-sum game.

Incomplete
system S

Environment

Specification

Zero-sum
game

Two players

Game objective

Solving
the game

S wins +
winning
strategy

S cannot
enforce a win
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Zero-sum games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C = {a, b, c}, arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of a player is a function σ : E ∗ → E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .
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Strategy complexity

• Given a game and an initial vertex  who can win?
• To decide it, exhibit a winning strategy of a player.
• Issues:
I strategies σ : E∗ → E may not have a finite representation;
I there are infinitely many of them.

Strategy complexity
Given an objective, when winning is possible, understand if simple
strategies suffice to win, or if complex strategies are required.

Desirable properties:
• winning strategies can use bounded information (finite representation!);
• computable bounds on this information (finite number of strategies!).
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Simple strategies

Memoryless strategies
A strategy is memoryless if it makes decisions based only on the current
arena vertex (σ : Vi → E ).

Finite-memory strategies
A strategy is finite-memory if it makes decisions based on the current
arena vertex and the current state of a memory structure (σ : Vi ×M → E ).

Finite memory structure M = (M,minit ∈ M, αupd : M × C → M).
E.g., to remember whether a or b was last played:

a b

a

b

m1 m2

Memoryless strategies use memory structure C .
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Example

C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}

a, c b, c

a

b

m1 m2

σ(v1,m1) =
c−→ v2

σ(v2,m1) =
b−→ v2

σ(v2,m2) =
c−→ v1

σ(v1,m2) =
a−→ v2

a b

v1 v2c

c

 Memoryless strategies do not suffice. . .
but two memory states do!
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Finite-memory determinacy

Memoryless determinacy

An objective is memoryless-determined if in all arenas,
memoryless strategies suffice for both players.

Finite-memory determinacy

An objective is finite-memory-determined if in all arenas,
finite-memory strategies suffice for both players.

Various definitions depending on
• the class of arenas considered (finite, infinite, finitely branching. . . ),
• whether we focus on both players or a single player.
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State of the art: memoryless determinacy

Many “classical” objectives are memoryless-determined:
reachability, Büchi, parity, energy, mean payoff, discounted sum. . .

Memoryless determinacy is well-understood:

• Sufficient conditions for both players,1 for a single player.2

• Characterizations for both players over finite3/infinite4 arenas,
for a single player over infinite arenas.5

1Gimbert and Zielonka, “When Can You Play Positionally?”, 2004; Aminof and Rubin, “First-cycle games”, 2017.
2Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006; Bianco et al., “Exploring the boundary of

half-positionality”, 2011.
3Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
4Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
5Ohlmann, “Characterizing Positionality in Games of Infinite Duration over Infinite Graphs”, 2022.
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State of the art: finite-memory determinacy

• Finite-memory determinacy is understood for specific objectives,6
but few results of wide applicability.7

• Central class: ω-regular objectives. Examples with C = {a, b}:
ω-regular expressions:

b∗ab∗aCω

ω-automata:

qinit qa qaa

a•

b
•

a•b a, b•

Linear temporal logic (LTL):

GFa

Theorem8, 9

All ω-regular objectives are finite-memory-determined.

6Chatterjee, Randour, and Raskin, “Strategy synthesis for multi-dimensional quantitative objectives”, 2014; Colcombet,
Fijalkow, and Horn, “Playing Safe”, 2014; Bouyer, Hofman, et al., “Bounding Average-Energy Games”, 2017.

7Le Roux, Pauly, and Randour, “Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions”,
2018; Bouyer, Le Roux, and Thomasset, “Finite-Memory Strategies in Two-Player Infinite Games”, 2022.

8Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
9Rabin, “Decidability of Second-Order Theories and Automata on Infinite Trees”, 1969.
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Significance

Consequences of a fine-grained understanding of strategy complexity:

• Decidability of logical theories through FM det. (see monadic
second-order logic, linked to ω-regular objectives).
• Practical synthesis problems through FM det. (see, e.g., LTL
specifications10).
• At the core of algorithms to solve games (see, e.g., parity games11).
• Controllers as compact as possible.

10Pnueli, “The Temporal Logic of Programs”, 1977.
11Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Overview of our contributions

I. General conditions
for finite-memory determinacy

• Arbitrary objectives
• Algebraic characterizations of

the sufficiency of a memory
structure for both players

• Theoretical tools to find
memory structures

• Generalizations of memoryless
determinacy results

II. Precise memory requirements
of classes of objectives

• ω-regular objectives
• Observation: memory
requirements not settled

1 Regular objectives (≈ DFAs)
I Effective characterization of

precise memory structures
I (Computational) complexity

2 Objectives recognizable by
deterministic Büchi automata
I Effective characterization of

“no memory for P1”
I Complexity
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1 One-to-two-player lift

One-to-two-player memoryless lift (finite arenas)12

Let W ⊆ Cω be an objective. If
• in all one-player arenas of P1, P1 has memoryless winning strategies,
• in all one-player arenas of P2, P2 has memoryless winning strategies,

then both players have memoryless winning strategies in two-player arenas.

Extremely useful in practice. Very easy to recover memoryless
determinacy of, e.g., parity13 and mean-payoff 14 games.

What about finite-memory determinacy?

12Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
13Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
14Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
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1 What about finite-memory determinacy?

• Counterexample to a one-to-two-player lift for FM determinacy .
• In the counterexample, the size of the memory depends on the size
of the one-player arenas. Motivates the restriction to. . .

Arena-independent memory
An objective has arena-independent finite-memory winning strategies if

there exists a memory structure M such that for all arenas A,

strategies usingM suffice to win in A.

• Still holds for ω-regular objectives!
• Restriction over finite arenas, not so much over infinite arenas.
• One-to-two-player lift works!
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1 One-to-two-player lifts

When does memory determinacy in two-player zero-sum games
reduce to one-player memory determinacy?

Arenas\Str. comp. Memoryless FM “∃M∀A” Mildly growing
Finite [GZ05]15 [BLORV22]16 [Koz22]17

Infinite [CN06]18 [BRV23]19

Finite stochastic [GZ09]20 [BORV21]21

By-products of algebraic/language-theoretic characterizations.

15Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
16Bouyer, Le Roux, Oualhadj, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2022.
17Kozachinskiy, “One-To-Two-Player Lifting for Mildly Growing Memory”, 2022.
18For prefix-independent objectives; Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
19Bouyer, Randour, and Vandenhove, “Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on

Infinite Graphs”, 2023.
20Gimbert and Zielonka, “Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global

Preferences”, 2009.
21Bouyer, Oualhadj, et al., “Arena-Independent Finite-Memory Determinacy in Stochastic Games”, 2021.
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2 Link with automaton representation

Let W ⊆ Cω be an objective.

≈ Myhill-Nerode congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇐⇒ yz ∈W .

I.e., x and y have the same winning continuations; as good as each other.

Properties

• If W is ω-regular, then ∼W has finitely many equivalence classes.
• There is a DFA SW “prefix classifier” associated with ∼W .

Might not “recognize” the language ( 6= languages of finite words). . .
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2 Two examples

. . . but we noticed a decomposition involving prefix classifiers and
memory structures.
Let C = {a, b}.

Objective Prefix-classifier SW Sufficient memory

W = b∗ab∗aCω

b b

Ca a C

W = “a and b ∞ly often” C b a
a•
b
•
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2 Main result

Let W ⊆ Cω be an objective.

Theorem
If a finite memory structureM suffices to play optimally in infinite arenas
for both players, then

W is recognized by a parity automaton (SW ⊗M, p).

=⇒ W is ω-regular!

Generalizes [CN06]22 (prefix-independent, memoryless case).

22Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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2 Corollary

Characterization
Let W be an objective.

W is finite-memory-determined over infinite arenas
⇐⇒

W is ω-regular.

⇐= is well-known.23, 24

=⇒ follows from the previous slide.

23Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
24Rabin, “Decidability of Second-Order Theories and Automata on Infinite Trees”, 1969.
Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervized by P. Bouyer and M. Randour)



Part I: Summary
• Useful notion of arena-independent FM determinacy.
• General characterizations over finite and infinite arenas.
• Theoretical tools to determine memory requirements.
• Central place of ω-regular objectives.

Related publications
• Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR’20 & LMCS) “Games Where You

Can Play Optimally with Arena-Independent Finite Memory”
• Bouyer, Randour, V. (STACS’22 & TheoretiCS) “Characterizing Omega-Regularity

through Finite-Memory Determinacy of Games on Infinite Graphs”

Limits
Wide applicability, but. . .
• not fully effective;
• in general, no tight memory requirements for each player.
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II. Precise memory requirements
of classes of objectives
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II. Precise memory requirements
of classes of objectives

I. General conditions
for finite-memory determinacy

• Arbitrary objectives
• Algebraic characterizations of
the sufficiency of a memory
structure for both players
• Theoretical tools to find
memory structures
• Generalizations of memoryless
determinacy results

II. Precise memory requirements
of classes of objectives

• ω-regular objectives
• Observation: memory
requirements not settled

1 Regular objectives (≈ DFAs)
I Effective characterization of

precise memory structures
I Existence of small

structures is NP-complete
2 Objectives recognizable by

deterministic Büchi automata
I Effective characterization of

“no memory for P1”
I Decidable in polynomial time
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1 Regular objectives

Well-understood ω-regular objectives: Muller conditions, focusing on what
is seen infinitely often.25, 26
E.g., b∗ab∗aCω is not a Muller condition.

Missing pieces
Orthogonal quest: objectives where “finite prefixes matter”.

We consider the “simplest” ones.

Regular objectives

• A regular reachability objective is a set LCω with L ⊆ C∗ regular.
• A regular safety objective is a set Cω \ LCω.

Expressible as standard deterministic finite automata.
25Gurevich and Harrington, “Trees, Automata, and Games”, 1982.
26Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
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1 Question

Memory requirements of regular objectives
Characterize the memory structures that suffice to make optimal
decisions for regular objectives in any arena. Compute minimal ones.

Ideas
• A DFA recognizing the language, taken as a memory structure, always
suffices for both players.
• But can be much smaller in general!
• Properties linked to the Myhill-Nerode congruence.
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Comparing words
Let W ⊆ Cω be an objective.

Comparing prefixes
For x , y ∈ C∗, x �W y if for all z ∈ Cω, xz ∈W =⇒ yz ∈W .

I.e., y has more winning continuations than x ; better situation.

Example
Let W be the regular reachability objective induced by this DFA.

qinit

qa

qb

qab

a

b

b

a

a

b

E.g., ε ≺W a, a ≺W ab,
a and b are incomparable for �W .
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Necessary condition for the memory
Let W ⊆ Cω be an objective.

Lemma
A sufficient memory structureM = (M,minit, αupd) needs to distinguish
incomparable words (for �W ), i.e.,

if x , y ∈ C∗ are incomparable for �W ,
then α∗upd(minit, x) 6= α∗upd(minit, y).

Why? (Example) need to make the right decision in this arena.

qinit

qa

qb

qab

a

b

b

a

a

b

v2 v1

a

b

b

a

b

a
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1 Characterizations

Theorem
Let W be a regular safety objective.

A memory structureM suffices in all arenas for P1
if and only if

M distinguishes incomparable words.

Theorem
Let W be a regular reachability objective.

Memory structureM suffices in all arenas for P1
if and only if

M distinguishes incomparable words and
M distinguishes insufficient progress.
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1 Computational complexity

Decision problems
Input: An automaton D inducing the regular reachability (or safety)
objective W and k ∈ N.
Question: ∃ a memory structureM with ≤ k states that suffices for W ?

Thanks to the “effectiveness” of the two properties, we showed that:

Theorem
These problems are NP-complete.
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1 Implementation

Algorithms that find minimal memory structures for regular objectives,
using a SAT solver.

D =

M = memReq.smallest_memory_safety(D)
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II. Precise memory requirements
of classes of objectives

I. General conditions
for finite-memory determinacy

• Arbitrary objectives
• Algebraic characterizations of
the sufficiency of a memory
structure for both players
• Theoretical tools to find
memory structures
• Generalizations of memoryless
determinacy results

II. Precise memory requirements
of classes of objectives

• ω-regular objectives
• Observation: memory
requirements not settled

1 Regular objectives (≈ DFAs)
I Effective characterization of

precise memory structures
I Existence of small structures is

NP-complete
2 Objectives recognizable by

deterministic Büchi automata
I Effective characterization

of “no memory for P1”
I Decidable in polynomial

time
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2 Deterministic Büchi automata

A deterministic Büchi automaton B on C
• reads infinite words (in Cω),
• accepts words that see infinitely many Büchi transitions •.
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L(B) = {w ∈ {a, b}ω | w sees ∞ly many a and ∞ly many b}

Question
Given B, can P1 win without memory for objective W = L(B)?
(Is L(B) half-positional?)
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2 Results

Let B be a deterministic Büchi automaton.

Theorem
For objective W = L(B), P1 does not need memory if and only if
• all prefixes are comparable for �W ,
• W is progress-consistent, and
• W is recognized by its prefix classifier as a DBA.
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Polynomial-time algorithm
Can be decided in O(|B|4) time.
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Part II: Summary

• Tools to study memory req. of classes of ω-regular objectives.
• Effective characterizations for DFAs and DBAs.
• Decidability and complexity of the related decision problems.

Related publications

• Bouyer, Fijalkow, Randour, V. (Submitted preprint) “How to Play Optimally
for Regular Objectives?”

• Bouyer, Casares, Randour, V. (CONCUR’22) “Half-Positional Objectives
Recognized by Deterministic Büchi Automata”
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Future works

• (Part I) General results for arena-dependent memory requirements.
I Observing edges rather than colors in the model.
I Well-behaved nondeterminism (history-determinism).27

• (Part II) Automatically compute minimal memory structures for all
ω-regular objectives?

• More expressive settings (e.g., stochastic, concurrent,28 or timed
games).

• More expressive strategy models than finite-state machines (e.g.,
pushdown29 or register30 automata).

Thanks!
27Boker and Lehtinen, “When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism”, 2023.
28Bordais, Bouyer, and Le Roux, “Optimal Strategies in Concurrent Reachability Games”, 2022.
29Walukiewicz, “Pushdown Processes: Games and Model-Checking”, 2001.
30Exibard et al., “Computability of Data-Word Transductions over Different Data Domains”, 2022.
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