Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove

LaBRI, Université de Bordeaux

November 9, 2023 – MoVe Seminar, Marseille

Overview

Strategy complexity

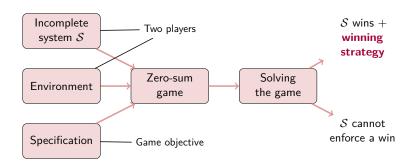
Understand if **complex** strategies must be used, or if **simple** strategies suffice to achieve an **objective** in presence of an **antagonistic** environment.

Aim of the talk

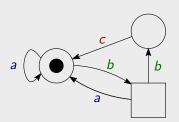
- Motivate the question of strategy complexity.
- Present the state of the art.
- Review recent results on the topic (part of my PhD thesis).

Context: synthesis

- An (incomplete, reactive) system,
- living in an (uncontrollable) environment,
- with a purpose/specification.
- → Modeling through a zero-sum game.



Zero-sum turn-based games on graphs



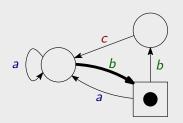
- Colors C, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

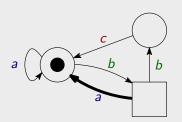


- Colors C, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square). Infinite interaction \Rightarrow infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum **turn-based** games on graphs

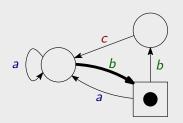


- Colors C, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square). Infinite interaction \Rightarrow infinite word w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

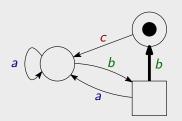


- Colors C, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square). Infinite interaction \Rightarrow infinite word w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

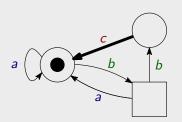


- Colors C, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square). Infinite interaction \Rightarrow infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

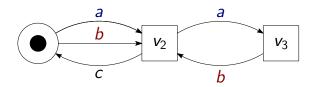


- Colors C, arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square). Infinite interaction \rightsquigarrow infinite word $w = babbc \dots \in C^{\omega}$.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

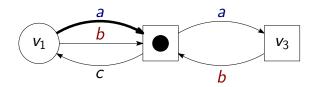
Strategies

A **strategy** of player \mathcal{P}_i is a function $\sigma \colon E^* \to E$.

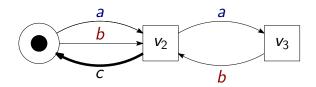
$${\cal C}=\{a,{\color{red}b},c\},$$
 ${\cal W}=\{w\in{\it C}^{\omega}\mid a \text{ is seen }\infty \text{ly often and } {\color{blue}b} \text{ is seen }\infty \text{ly often}\}$



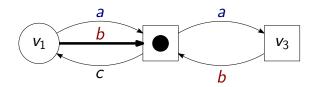
$${\cal C}=\{a,{\color{red}b},c\},$$
 ${\cal W}=\{w\in{\it C}^{\omega}\mid a \text{ is seen }\infty \text{ly often and } {\color{blue}b} \text{ is seen }\infty \text{ly often}\}$



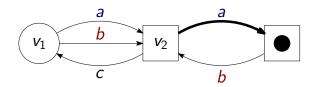
$${\cal C}=\{a,{\color{blue}b},c\},$$
 ${\cal W}=\{w\in {\it C}^{\omega}\mid a \text{ is seen } \infty \text{ly often and } {\color{blue}b} \text{ is seen } \infty \text{ly often}\}$



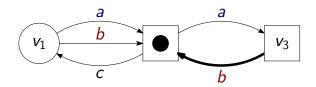
$${\cal C}=\{a, {\color{red} b}, c\},$$
 ${\color{blue} W}=\{w\in {\it C}^\omega\mid a \text{ is seen } \infty \text{ly often and } {\color{blue} b} \text{ is seen } \infty \text{ly often}\}$



$${\cal C}=\{a, {\color{red} b}, c\},$$
 ${\cal W}=\{w\in {\it C}^{\omega}\mid a \text{ is seen } \infty \text{ly often and } {\color{blue} b} \text{ is seen } \infty \text{ly often}\}$



$${\cal C}=\{a,{\color{red}b},c\},$$
 ${\cal W}=\{w\in{\it C}^{\omega}\mid a \text{ is seen }\infty \text{ly often and } {\color{blue}b} \text{ is seen }\infty \text{ly often}\}$



Strategy complexity

- Given a game and an initial vertex

 → who can win?
- To decide it, exhibit a **winning strategy** of a player.
- Issues:
 - ▶ strategies $\sigma: E^* \to E$ may not have a finite representation;
 - there are infinitely many of them.

Strategy complexity

Given an **objective**, understand if **simple** strategies suffice to win, or if **complex** strategies are required to win (when possible).

Desirable properties:

- winning strategies use bounded information (finite representation!);
- computable bounds (finite number of strategies!).

Simple strategies

Memoryless strategies

A strategy is **memoryless** if it makes decisions based only on the **current** arena vertex $(\sigma \colon V_i \to E)$.

Finite-memory strategies

A strategy is **finite-memory** if it makes decisions based on

- the current arena vertex, and
- the current state of a finite memory structure.

Memory structures

Memory structures

A **memory structure** is a tuple $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ where M is a finite set of states, $m_{\text{init}} \in M$, and $\alpha_{\text{upd}} \colon M \times C \to M$.

Given \mathcal{M} and an arena $\mathcal{A}=(V_1,V_2,E)$, a *finite-memory strategy* of \mathcal{P}_i is a function

$$\sigma: V_i \times M \to E$$
.

Remark

Memory structures are **chromatic**: only observe colors.

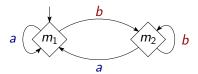
Given $\mathcal{A} = (V_1, V_2, E)$, slightly more general¹ to have

$$\alpha_{\sf upd} \colon M \times {\it E} \to M.$$

Still, we consider here chromatic structures (additional motivation later).

 $^{^{1}}$ Casares, "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

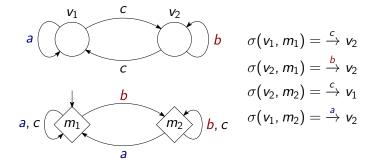
E.g., structure to remember whether a or b was last seen:



Memoryless strategies use **memory structure**

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$

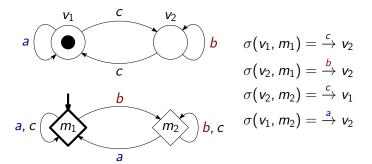


→ Memoryless strategies do **not** suffice...

but **two memory states** do! There is a winning strategy $\sigma: V_1 \times M \to E$.

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$

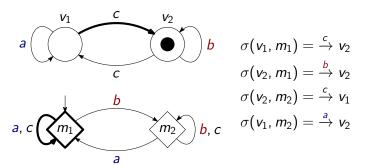


→ Memoryless strategies do not suffice...

but **two memory states** do! There is a winning strategy $\sigma \colon V_1 \times M \to E$.

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$

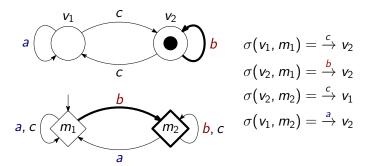


→ Memoryless strategies do not suffice...

but **two memory states** do! There is a winning strategy $\sigma \colon V_1 \times M \to E$.

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$

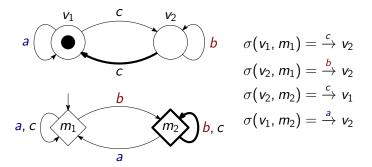


→ Memoryless strategies do not suffice...

but **two memory states** do! There is a winning strategy $\sigma: V_1 \times M \to E$.

$$C = \{a, b, c\},$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$

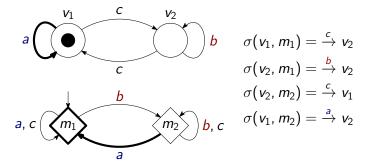


→ Memoryless strategies do **not** suffice...

but **two memory states** do! There is a winning strategy $\sigma \colon V_1 \times M \to E$.

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

but **two memory states** do! There is a winning strategy $\sigma \colon V_1 \times M \to E$.

Finite-memory determinacy

Memoryless determinacy

An **objective** is **memoryless-determined** if **in all arenas**, **memoryless** strategies suffice **for both players**.

Finite-memory determinacy

An objective is finite-memory determined if in all arenas, finite-memory strategies suffice for both players.

Various definitions depending on

- the class of arenas considered (finite, infinite, finitely branching...),
- whether we focus on **both** players or a **single** player.

State of the art: Memoryless determinacy

Many "classical" objectives are **memoryless-determined**: reachability, Büchi, parity, energy, mean payoff, discounted sum. . .

Memoryless determinacy is well-understood:

- Sufficient conditions for both players,² for a single player.³
- Characterizations for both players over finite⁴/infinite⁵ arenas, for a single player over infinite arenas.⁶

²Gimbert and Zielonka, "When Can You Play Positionally?", 2004; Aminof and Rubin, "First-cycle games", 2017.

³Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006; Bianco et al., "Exploring the boundary of half-positionality", 2011.

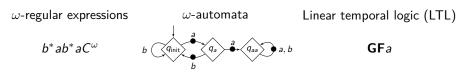
 $^{^4\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

⁶Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2023.

State of the art: Finite-memory determinacy

- Finite-memory determinacy is understood for specific objectives,⁷
 but few results of wide applicability.⁸
- Central class: ω -regular objectives. Examples with $C = \{a, b\}$:



Theorem^{9,10}

All ω -regular objectives are finite-memory determined.

⁷Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014; Colcombet, Fijalkow, and Horn, "Playing Safe", 2014; Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

⁸Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018; Bouyer, Le Roux, and Thomasset, "Finite-Memory Strategies in Two-Player Infinite Games", 2022.

 $^{^9\}mathrm{B\"uchi}$ and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

 $^{^{10}}$ Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

Significance

Consequences of a fine-grained understanding of strategy complexity:

- **Decidability** of logical theories through FM det. (see *monadic* second-order logic, linked to ω -regular objectives¹¹).
- Practical synthesis problems through FM det. (see, e.g., LTL specifications¹²).
- At the core of algorithms to **solve** games (see, e.g., *parity games*¹³).
- Controllers as **compact** as possible.

 $^{^{11}\}mathrm{B\"{u}chi}$ and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

¹²Pnueli, "The Temporal Logic of Programs", 1977.

¹³Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Plan: three results

- Two "theoretical" characterizations of finite-memory determinacy:
 - ► I. Reduction to simpler arenas.
 - ► II. Link with automaton representation.
- III. One "effective" characterization to **compute** small memory structures; focus on ω -regular objectives.

Joint works with P. Bouyer, A. Casares, N. Fijalkow, S. Le Roux, Y. Oualhadj, M. Randour.

I. Reduction to simpler arenas

Reduction to simpler arenas: existing result

One-to-two-player memoryless lift (finite arenas)¹⁴

Let $W \subseteq C^{\omega}$ be an objective. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has memoryless winning strategies,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has memoryless winning strategies, then both players have memoryless winning strategies in **two-player** arenas.

Strategy complexity does not increase when an opponent is added! Easy to recover **memoryless determinacy** of, e.g., **parity**¹⁵ and **mean-payoff**¹⁶ objectives.

What about **finite-memory determinacy**?

¹⁴Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^{15}}$ Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

 $^{^{16}}$ Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What about finite-memory determinacy?

- Counterexample to a one-to-two-player lift for FM determinacy (2).
- In the counterexample, **the size of the memory depends** on the size of the one-player **arenas**. **Motivates the restriction to**...

Arena-independent finite memory

An objective is arena-independent finite-memory determined if

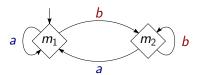
there exists a memory structure \mathcal{M} such that for all arenas \mathcal{A} , strategies based on \mathcal{M} suffice to win in \mathcal{A} .

- Requires **chromatic** memory structures.
- Still holds for ω -regular objectives!
- One-to-two-player lift works!

$$C = \{a, b, c\},$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$

This memory structure actually suffices in all arenas!



 $\rightsquigarrow W$ is arena-independent finite-memory determined.

One-to-two-player finite-memory lift

One-to-two-player FM lift [Bouyer, Le Roux, Oualhadj, Randour, V., 2022]¹⁷

Let $W\subseteq C^\omega$ be an objective and $\mathcal{M}_1,\mathcal{M}_2$ be memory structures. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has winning strategies based on \mathcal{M}_1 ,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has winning strategies based on \mathcal{M}_2 , then both players have winning strategies based on $\mathcal{M}_1 \otimes \mathcal{M}_2$ in **two-player** arenas.

Strategy Complexity of Zero-Sum Games on Graphs

¹⁷Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

One-to-two-player lifts

When does strategy complexity in two-player zero-sum games reduce to strategy complexity in one-player games?

Arenas $\Str.$ comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite	[GZ05] ¹⁸	[BLORV22] ¹⁹	[Koz22] ²⁰
Infinite	[CN06] ²¹	[BRV23] ²²	
Finite stochastic	[GZ09] ²³	[BORV21] ²⁴	

 $^{^{18}\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁹Bouyer, Le Roux, Oualhadj, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

 $^{^{20}\}mbox{Kozachinskiy},$ "One-To-Two-Player Lifting for Mildly Growing Memory", 2022.

²¹For prefix-independent objectives; Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.
²²Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on

²²Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

 $^{^{23}}$ Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

 $^{^{24}} Bouyer,\ Oualhadj,\ et\ al.,\ "Arena-Independent\ Finite-Memory\ Determinacy\ in\ Stochastic\ Games",\ 2021.$

II. Link with automaton representation

Second reduction: Link with automaton representation

Let $W \subseteq C^{\omega}$ be an objective.

(Almost) Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^\omega$, $xz \in W \iff yz \in W$.

I.e., x and y have the same winning continuations; as good as each other.

Properties

- If W is ω -regular, then \sim_W has finitely many equivalence classes.
- There is a DFA S_W "prefix classifier" associated with \sim_W .

 \mathcal{S}_W might not "recognize" the objective (\neq languages of *finite* words)...

Two examples

 \dots but there is a *decomposition* with **prefix classifier** \times **memory structure**.

Let $C = \{a, b\}.$

Objective	Prefix classifier \mathcal{S}_W	Sufficient memory
$W=b^*ab^*aC^\omega$	$ \begin{array}{c} b \\ \downarrow \\ $	$\rightarrow \bigcirc c$
$W=$ " a and b ∞ ly often"	$\rightarrow \bigcirc \sim c$	a b

From memory to automaton

Let $W \subseteq C^{\omega}$ be an objective.

Theorem [Bouyer, Randour, V., 2023]²⁵

If a finite memory structure ${\mathcal M}$ suffices to win in ${\bf infinite}$ arenas for both players, then

W is recognized by a parity automaton $(S_W \otimes \mathcal{M}, p)$.

In particular,

 ${\it W}$ is arena-independent finite-memory determined over infinite arenas

W is ω -regular.

Generalizes [CN06]²⁶ (prefix-independent, memoryless case).

²⁵Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

²⁶Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Up to now

Summary

Two characterizations to help study kinds of finite-memory determinacy.

Limits

Few hypotheses, but...

- not fully effective;
- in general, no tight memory requirements for each player.

III. Effective characterization

First: a well-studied case

For $\mathcal{F} \subseteq 2^{\mathcal{C}}$, objective Muller(\mathcal{F}) is the set of words whose **set of colors** seen infinitely often is in \mathcal{F} .

Examples with $C = \{a, b\}$:

- Muller($\{\{a\}, \{a, b\}\}\) = \infty$ ly many a,
- Muller($\{\{a,b\}\}\)$ = " ∞ ly many a and ∞ ly many b".

Memory requirements of Muller objectives

Series of papers between 1982 and 1998, ^{27,28,29,30} ending with a precise characterization and an algorithm. ³¹

 \leadsto **Upper bound** on memory requirements for all ω -regular objectives!

²⁷Gurevich and Harrington, "Trees, Automata, and Games", 1982.

²⁸Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

 $^{^{29}} Klarlund, \ ^{\circ} Progress \ Measures, \ Immediate \ Determinacy, \ and \ a \ Subset \ Construction \ for \ Tree \ Automata", \ 1994.$

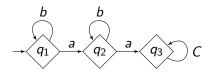
 $^{^{30}}$ Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

³¹Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Why an upper bound?

Let $C = \{a, b\}$, $W = b^*ab^*aC^{\omega}$ (\approx seeing a two or more times). How to use results about **Muller objectives**?

W is not directly an objective Muller(\mathcal{F}) with $\mathcal{F} \subseteq 2^{C}$ \rightsquigarrow needs an **automaton structure**.



 $\rightsquigarrow W = \text{Muller}(\{\{q_3\}\}).$

Using [DJW97],³² we need 1 memory state...

... after augmenting the arenas with the automaton, so upper bound of 3 states of memory.

But 1 memory state suffices for winning strategies!

³²Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Other direction: Regular objectives

Missing pieces

Alternative quest: objectives where "finite prefixes matter".

We consider the "simplest" ones.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set $C^{\omega} \setminus LC^{\omega}$.

Expressible as standard deterministic finite automata.

Question

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives in any arena. Compute minimal ones.

Ideas

- A DFA recognizing the language L, taken as a memory structure, always suffices for both players
 (≈ usual approach: taking the product of the arena and the DFA).
- But can be much smaller in general!
- Properties linked to the Myhill-Nerode congruence.

I explain one of these properties here.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

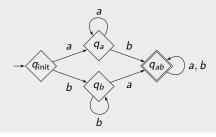
Comparing prefixes

For $x, y \in C^*$, $x \leq_W y$ if for all $z \in C^\omega$, $xz \in W \Longrightarrow yz \in W$.

I.e., y has more winning continuations than x; better situation.

Example

Let W be the regular **reachability** objective induced by this DFA.



 $\begin{array}{ll} \text{E.g., } \varepsilon \prec_W \text{ a,} \\ \text{a and } \text{b are } \text{incomparable for } \preceq_W. \end{array}$

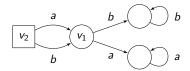
Necessary condition

Let $W\subseteq C^\omega$ be an objective, $\mathcal{M}=(M,m_{\mathsf{init}},\alpha_{\mathsf{upd}})$ be a memory structure.

Lemma

For \mathcal{M} to suffice for \mathcal{P}_1 , \mathcal{M} needs to **distinguish incomparable words**: if $x, y \in C^*$ are incomparable for $\leq_{\mathcal{W}}$, then

Why? We can build an arena in which distinguishing x and y is critical.



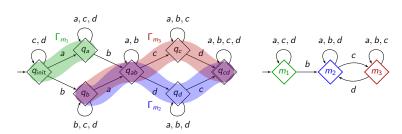
Characterizations

Theorem [Bouyer, Fijalkow, Randour, V., 2023]³³

Let W be a **regular safety objective**.

A memory structure ${\mathcal M}$ suffices in all arenas for ${\mathcal P}_1$ if and only if

 ${\cal M}$ distinguishes incomparable words.



Close characterization for regular reachability objectives.

³³Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2023.

Computational complexity

Decision problems

Input: An automaton \mathcal{D} inducing the regular **reachability** (or **safety**) objective W and $k \in \mathbb{N}$.

Question: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Thanks to the "effectiveness" of the properties, we showed that:

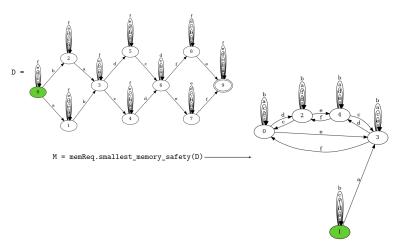
Theorem³⁴

These problems are NP-complete.

³⁴Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

Implementation

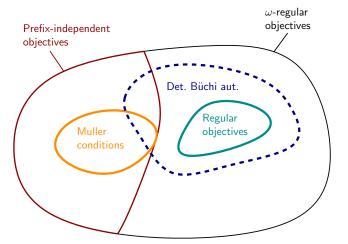
Algorithms 35 that find minimal memory structures for regular objectives, using a **SAT solver**.



 $^{^{35} {\}tt https://github.com/pvdhove/regularMemoryRequirements}$

Overview

Objectives with algorithms to compute **minimal** memory structures:



Only memoryless strategies for deterministic Büchi automata!

Future works

- More powerful memory structures.
 - Observing edges rather than colors (arena-dependent).
 - ▶ Well-behaved nondeterminism (history-determinism). 36
- Automatically compute minimal memory structures for all ω-regular objectives?
- Practical advantage in knowing the minimal memory structure?

Thanks!

 $^{^{36}}$ Boker and Lehtinen, "When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism", 2023.