Games Where You Can Play Optimally with Arena-Independent Finite Memory

Patricia Bouyer ${ }^{1}$ Stéphane Le Roux ${ }^{1} \quad$ Youssouf Oualhadj ${ }^{2}$ Mickael Randour ${ }^{3}$ Pierre Vandenhove ${ }^{1,3}$
${ }^{1}$ LSV - CNRS \& ENS Paris-Saclay, Université Paris-Saclay, France
${ }^{2}$ LACL - Université Paris-Est Créteil, France
${ }^{3}$ F.R.S.-FNRS \& UMONS - Université de Mons, Belgium
June 22, 2020 - MOVEP 2020

Outline

Strategy synthesis for two-player turn-based games

Design optimal controllers for systems interacting with an antagonistic environment.
"Optimal" w.r.t. an objective or a specification.

Goal: interest in "simple" controllers

Finite-memory determinacy: when do finite-memory controllers suffice?

Inspiration

Results by Gimbert and Zielonka ${ }^{1}$ about memoryless determinacy.

[^0]1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory

1 Memoryless determinacy

Two-player turn-based zero-sum games on graphs

- Finite two-player arenas: S_{1} (circles, for \mathcal{P}_{1}) and S_{2} (squares, for \mathcal{P}_{2}), edges E.
- Set C of colors. Edges are colored.
- "Objectives" given by preference relations $\sqsubseteq \in C^{\omega} \times C^{\omega}$ (total preorder). Zero-sum, \sqsubseteq^{-1}.
- A strategy for \mathcal{P}_{i} is a (partial) function $\sigma: E^{*} \rightarrow E$.

Memoryless determinacy

Question

Given a preference relation, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_{i} is memoryless if it is a function $\mathbb{E} S_{i} \rightarrow E$.

E.g., for reachability, memoryless strategies suffice. Also suffice for safety, Büchi, co-Büchi, parity, mean-payoff, energy, average-energy...

Memoryless determinacy

Good understanding of memoryless determinacy:

- sufficient conditions to guarantee memoryless optimal strategies for both players. ${ }^{2,3}$
- sufficient conditions to guarantee memoryless optimal strategies for one player. ${ }^{4,5,6}$
- characterization of the preference relations admitting optimal memoryless strategies for both players. ${ }^{7}$

[^1]
Gimbert and Zielonka's characterization ${ }^{8}$

Let \sqsubseteq be a preference relation. Two results:
1 Characterization of memoryless determinacy w.r.t. properties of \sqsubseteq.
2 Corollary:

One-to-two-player memoryless lifting

If

- in all one-player arenas of $\mathcal{P}_{1}, \mathcal{P}_{1}$ has an optimal memoryless strategy,
- in all one-player arenas of $\mathcal{P}_{2}, \mathcal{P}_{2}$ has an optimal memoryless strategy, then both players have an optimal memoryless strategy in all two-player arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., mean-payoff and parity games.

[^2]
1 Memoryless determinacy

2 The need for memory

3 Arena-independent finite memory

The need for memory

Memoryless strategies do not always suffice.

- Büchi $(A) \wedge \operatorname{Büchi}(B)$: requires finite memory.

- Mean payoff ≥ 0 in both dimensions: requires infinite memory. ${ }^{9}$
\rightsquigarrow Combinations of objectives usually require memory.

[^3]
An attempt at lifting [GZ05] to FM determinacy

- Lack of a good understanding of finite-memory determinacy.
- Related work: sufficient properties to preserve FM determinacy in Boolean combinations of objectives. ${ }^{10}$
- Our approach:

Hope: extend Gimbert and Zielonka's results

One-to-two-player lifting for memess finite-memory determinacy.

[^4]
Counterexample

Let $C \subseteq \mathbb{Z}$. \mathcal{P}_{1} wants to achieve a play $\pi=c_{1} c_{2} \ldots \in C^{\omega}$ s.t.

$$
\underset{n}{\limsup } \sum_{i=0}^{n} c_{i}=+\infty \quad \text { or } \quad \exists^{\infty} n, \sum_{i=0}^{n} c_{i}=0 .
$$

Optimal FM strategies in one-player arenas...
... but not in two-player arenas: \mathcal{P}_{1} wins but needs infinite memory.

Intuition:

In one-player arenas, \mathcal{P}_{1} can bound the memory he needs in advance.
In two-player arenas, \mathcal{P}_{2} can generate arbitrarily long sequences.

1 Memoryless determinacy

3 Arena-independent finite memory

Arena-independent memory

- For Büchi $(A) \wedge \operatorname{Büchi}(B)$, this structure suffices to play optimally on all arenas for \mathcal{P}_{1}.

- The counterexample fails because in one-player arenas, the size of the memory is dependent on the size of the arena.
- Observation: for many objectives, one fixed memory structure suffices for all arenas.
> "For all \mathcal{A}, does there exist \mathcal{M}...?"
> \rightarrow "Does there exist \mathcal{M}, for all $\mathcal{A} .$. ?"

Method: reproducing the approach of Gimbert and Zielonka given a memory structure \mathcal{M}.

Characterization of arena-independent determinacy

Let \sqsubseteq be preference relation, \mathcal{M} be a memory structure.
1 Characterization of "playing with \mathcal{M} is sufficient" in terms of properties of \sqsubseteq.
2 Corollary:

One-to-two-player lifting

If

- in all one-player arenas of $\mathcal{P}_{1}, \mathcal{P}_{1}$ has an optimal strategy with memory \mathcal{M}_{1},
- in all one-player arenas of $\mathcal{P}_{2}, \mathcal{P}_{2}$ has an optimal strategy with memory \mathcal{M}_{2}, then both players have an optimal strategy in all two-player arenas with memory $\mathcal{M}_{1} \otimes \mathcal{M}_{2}$.

In short: the study of one-player arenas is sufficient to determine whether playing with arena-independent finite memory suffices.

Applicability and limits

- Applies to objectives with optimal arena-independent strategies:
- generalized reachability, ${ }^{11}$
- generalized parity, ${ }^{12}$
- window parity, ${ }^{13}$
- lower- and upper-bounded (multi-dimensional) energy games. ${ }^{14,15}$
- Does not apply to, e.g., multi-dimension lower-bounded energy objectives: ${ }^{16}$ the size of the finite memory depends on the arena.

[^5]
Conclusion

Key observation: many objectives require arena-independent memory.

Contributions

- Characterization of arena-independent finite-memory determinacy.
- One-to-two-player lifting.
- Generalization of Gimbert and Zielonka's work.

Future work

Understand (arena-dependent) finite-memory determinacy through the study of one-player arenas.

Thanks!

[^0]: ${ }^{1}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.
 Playing Optimally with Arena-Independent Finite Memory
 Bouyer, Le Roux, Oualhadj, Randour, Vandenhove

[^1]: ${ }^{2}$ Gimbert and Zielonka, "When Can You Play Positionally?", 2004.
 ${ }^{3}$ Aminof and Rubin, "First-cycle games", 2017.
 ${ }^{4}$ Kopczynski, "Half-Positional Determinacy of Infinite Games", 2006.
 ${ }^{5}$ Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.
 ${ }^{6}$ Gimbert and Kelmendi, "Two-Player Perfect-Information Shift-Invariant Submixing Stochastic Games Are Half-Positional", 2014.
 ${ }^{7}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

[^2]: ${ }^{8}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.
 Playing Optimally with Arena-Independent Finite Memory
 Bouyer, Le Roux, Oualhadj, Randour, Vandenhove

[^3]: ${ }^{9}$ Chatterjee, Doyen, et al., "Generalized Mean-payoff and Energy Games", 2010.

[^4]: ${ }^{10}$ Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

 Playing Optimally with Arena-Independent Finite Memory

[^5]: ${ }^{11}$ Fijalkow and Horn, "The surprizing complexity of reachability games", 2010.
 ${ }^{12}$ Chatterjee, Henzinger, and Piterman, "Generalized Parity Games", 2007.
 ${ }^{13}$ Bruyère, Hautem, and Randour, "Window parity games: an alternative approach toward parity games with time bounds", 2016.
 ${ }^{14}$ Bouyer, Markey, et al., "Average-energy games", 2018.
 ${ }^{15}$ Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.
 ${ }^{16}$ Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

