Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove^{1,2}

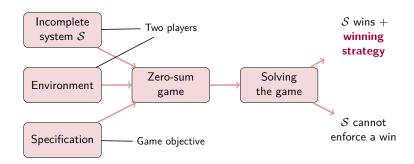
Thesis supervised by Patricia Bouyer² and Mickael Randour¹

¹F.R.S.-FNRS & UMONS - Université de Mons, Belgium ²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

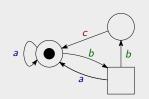
April 20, 2023 – PhD Private Defense

Context: **synthesis**

- An (incomplete, reactive) system,
- living in an (uncontrollable) environment,
- with a purpose/specification.
- → Modeling through a zero-sum game.



Zero-sum turn-based games on graphs



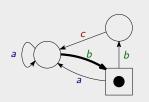
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{A}) \to \mathcal{E}$.

Zero-sum **turn-based** games on graphs



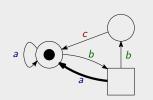
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{A}) \to \mathcal{E}$.

Zero-sum turn-based games on graphs



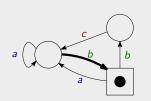
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 ⇒ infinite word w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{A}) \to \mathcal{E}$.

Zero-sum **turn-based** games on graphs



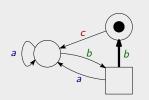
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 infinite word w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{A}) \to \mathcal{E}$.

Zero-sum turn-based games on graphs



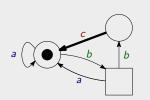
- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 ⇒ infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{A}) \to \mathcal{E}$.

Zero-sum turn-based games on graphs



- Colors C, edge-colored arena $A = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction

 ∴ infinite word w = babbc... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of player \mathcal{P}_{ℓ} is a function σ : Hists $_{\ell}(\mathcal{A}) \to \mathcal{E}$.

Strategy complexity

- Given a game and an initial vertex

 → who can win?
- To decide it, exhibit a winning strategy of a player.
- Issues:
 - ▶ strategies σ : Hists $_{\ell}(A) \to E$ may not have a finite representation;
 - there are infinitely many of them.

Strategy complexity

Given an **objective**, understand if **simple** strategies suffice to win, or if **complex** strategies are required to win (when possible).

Desirable properties:

- winning strategies use bounded information (finite representation!);
- computable bounds on this information (finite number of strategies!).

Simple strategies

Memoryless strategies

A strategy is **memoryless** if it makes decisions based only on the **current** arena vertex $(\sigma \colon V_{\ell} \to E)$.

Finite-memory strategies

A strategy is finite-memory if it makes decisions based on

- the current arena vertex, and
- the current state of a finite memory structure.

Memory structures

Memory structures

Finite **memory structure** $\mathcal{M} = (M, m_{\text{init}} \in M, \alpha_{\text{upd}})$. Two kinds:

• Given $A = (V_1, V_2, E)$, memory structure \mathcal{M} (for A) is **chaotic** if

$$\alpha_{\sf upd} : M \times E \to M$$
.

Memory structure \mathcal{M} is **chromatic** if

$$\alpha_{\sf upd} \colon M \times {\color{red}{\mathcal{C}}} \to M.$$

Chaotic structures may be more succinct but harder to reason with.

→ In what follows, memory structures are chromatic.

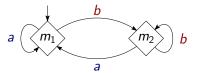
Given \mathcal{M} and an arena $\mathcal{A} = (V_1, V_2, E)$, a next-action function

$$\alpha_{\mathsf{nxt}} \colon V_{\ell} \times M \to E$$

defines a strategy.

 $^{^{1}}$ Casares, "On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions", 2022.

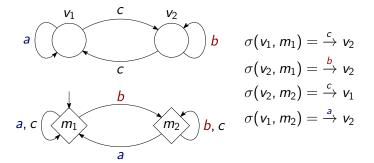
E.g., chromatic structure to remember whether a or b was last seen:



Memoryless strategies use memory structure

$$C = \{a, b, c\},$$

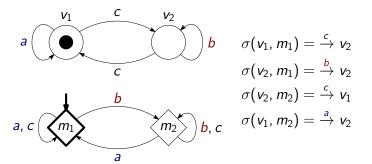
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do not suffice...

$$C = \{a, b, c\},$$

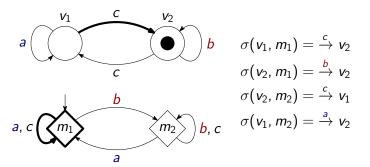
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

$$C = \{a, b, c\},$$

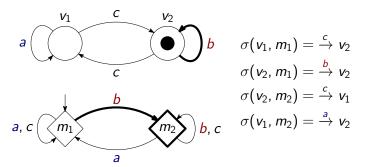
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

$$C = \{a, b, c\},$$

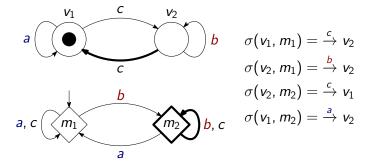
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice...

$$C = \{a, b, c\},$$

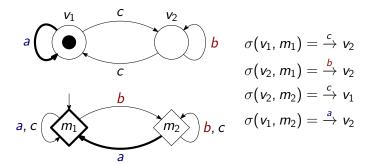
 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do **not** suffice. . .

$$C = \{a, b, c\},\$$

 $W = \{ w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \}$



→ Memoryless strategies do not suffice...

Finite-memory determinacy

Memoryless determinacy

An **objective** is **memoryless-determined** if **in all arenas**, **memoryless** strategies suffice **for both players**.

Finite-memory determinacy

An objective is finite-memory-determined if in all arenas, finite-memory strategies suffice for both players.

We require uniformity of the strategies.

Various definitions depending on

- the class of **arenas** considered (finite, infinite, finitely branching...),
- whether we focus on **both** players or a **single** player.

State of the art: memoryless determinacy

Many "classical" objectives are **memoryless-determined**: reachability, Büchi, parity, energy, mean payoff, discounted sum. . .

Memoryless determinacy is well-understood:

- Sufficient conditions for both players, 2 for a single player. 3
- Characterizations for both players over finite⁴/infinite⁵ arenas, for a single player over infinite arenas.⁶

²Gimbert and Zielonka, "When Can You Play Positionally?", 2004; Aminof and Rubin, "First-cycle games", 2017.

³Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006; Bianco et al., "Exploring the boundary of half-positionality", 2011.

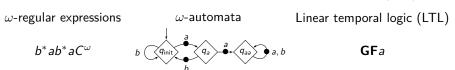
 $^{^4\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

 $^{^{6}} Ohl mann, \ ^{"}Characterizing \ Positionality \ in \ Games \ of \ Infinite \ Duration \ over \ Infinite \ Graphs", 2023.$

State of the art: finite-memory determinacy

- Finite-memory determinacy is understood for specific objectives,⁷ but few results of wide applicability.⁸
- Central class: ω -regular objectives. Examples with $C = \{a, b\}$:



Theorem^{9, 10}

All ω -regular objectives are finite-memory-determined.

⁷Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014; Colcombet, Fijalkow, and Horn, "Playing Safe", 2014; Bouyer, Hofman, et al., "Bounding Average-Energy Games", 2017.

⁸Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018; Bouyer, Le Roux, and Thomasset, "Finite-Memory Strategies in Two-Player Infinite Games", 2022.

 $^{^9\}mathrm{B\ddot{u}chi}$ and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

 $^{^{10}}$ Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969.

Significance

Consequences of a fine-grained understanding of strategy complexity:

- **Decidability** of logical theories through FM det. (see *monadic* second-order logic, linked to ω -regular objectives¹¹).
- Practical synthesis problems through FM det. (see, e.g., LTL specifications¹²).
- At the core of algorithms to **solve** games (see, e.g., *parity games* ¹³).
- Controllers as compact as possible.

 $^{^{11}\}mathrm{B\"{u}chi}$ and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

¹²Pnueli, "The Temporal Logic of Programs", 1977.

 $^{^{13}}$ Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Overview of our contributions

I. General conditions for finite-memory determinacy

- Arbitrary objectives
- Algebraic characterizations of the sufficiency of a memory structure for both players
- Theoretical tools to help find memory structures
- Generalizations of memoryless determinacy results

II. Precise memory requirements of classes of objectives

- ω-regular objectives
- Observation: memory requirements not settled
- **1** Regular objectives (pprox DFAs)
- Objectives recognizable by deterministic Büchi automata

I. General conditions for finite-memory determinacy

I. General conditions for finite-memory determinacy

- Arbitrary objectives
- Algebraic characterizations of the sufficiency of a memory structure for both players
- Theoretical tools to help find memory structures
 - One-to-two-player lifts
 - Memory structures→ automata for the objectives
- Generalizations of memoryless determinacy results

One-to-two-player lift

One-to-two-player memoryless lift (finite arenas)¹⁴

Let $W \subseteq C^{\omega}$ be an objective. If

- ullet in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has memoryless optimal strategies,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has memoryless optimal strategies, then both players have memoryless optimal strategies in **two-player** arenas.

Complexity does not increase if an opponent is added! Easy to recover **memoryless determinacy** of, e.g., **parity**¹⁵ and **mean-payoff**¹⁶ objectives.

What about **finite-memory determinacy**?

 $^{^{14}\}mbox{Gimbert}$ and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^{15}}$ Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

 $^{^{16}}$ Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What about finite-memory determinacy?

- Counterexample to a one-to-two-player lift for FM determinacy 🙁.
- In the counterexample, **the size of the memory depends** on the size of the one-player **arenas**. **Motivates the restriction to**...

Arena-independent finite memory

An objective is arena-independent finite-memory determined if

there exists a memory structure \mathcal{M} such that for all arenas \mathcal{A} , strategies based on \mathcal{M} suffice to win in \mathcal{A} .

- Requires **chromatic** memory structures.
- Still holds for ω -regular objectives!
- One-to-two-player lift works!

One-to-two-player finite-memory lift

One-to-two-player finite-memory lift (finite arenas)

Let $W\subseteq C^\omega$ be an objective, $\mathcal M$ be a memory structure. If

- in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has optimal strategies based on \mathcal{M} ,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has optimal strategies based on \mathcal{M} , then both players have optimal strategies based on \mathcal{M} in **two-player** arenas.

One-to-two-player lifts

When does strategy complexity in two-player zero-sum games reduce to strategy complexity in one-player games?

Arenas\Str. comp.	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite	[GZ05] ¹⁷	[BLORV22]	[Koz22] ¹⁸
Infinite	[CN06] ¹⁹	[BRV23]	
Finite stochastic	[GZ09] ²⁰	[BORV21]	

 $^{^{17}}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

 $^{^{18}\}mbox{Kozachinskiy},$ "One-To-Two-Player Lifting for Mildly Growing Memory", 2022.

 $^{^{19}}$ For prefix-independent objectives; Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

²⁰Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

I. General conditions for finite-memory determinacy

- Arbitrary objectives
- Algebraic characterizations of the sufficiency of a memory structure for both players
- Theoretical tools to help find memory structures
 - 1 One-to-two-player lifts
- Generalizations of memoryless determinacy results

Link with automaton representation

Let $W \subseteq C^{\omega}$ be an objective.

(Almost) Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \iff yz \in W$.

I.e., x and y have the same winning continuations; as good as each other.

Properties

- If W is ω -regular, then \sim_W has finitely many equivalence classes.
- There is a DFA S_W "prefix classifier" associated with \sim_W .

 \mathcal{S}_W might not "recognize" the language (\neq languages of *finite* words). . .

Two examples

 \dots but we found a decomposition with $\textit{prefix classifier} \times \textit{memory structure}.$

Let $C = \{a, b\}$.

Objective	Prefix classifier \mathcal{S}_W	Sufficient memory
$W=b^*ab^*a\mathcal{C}^\omega$	$\xrightarrow{b} \xrightarrow{a} \xrightarrow{a} C$	$\rightarrow \bigcirc c$
$W=$ " a and b ∞ ly often"	$\rightarrow \bigcirc \bigcirc c$	b a b

Main result

Let $W \subseteq C^{\omega}$ be an objective.

Theorem

If a finite memory structure ${\mathcal M}$ suffices to play optimally in ${\bf infinite}$ arenas for both players, then

W is recognized by a parity automaton $(S_W \otimes \mathcal{M}, p)$

for some $p: M \times C \rightarrow \{0, \dots, n\}$.

In particular,

 ${\it W}$ is **chromatic-finite-memory-determined** over infinite arenas

$$\iff$$

W is ω -regular.

Generalizes [CN06]²¹ (prefix-independent, memoryless case).

 $^{^{21}}$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Part I: Summary

- Useful notion of arena-independent FM determinacy.
- General characterizations over finite and infinite arenas, theoretical tools to determine memory requirements.
- Central place of ω -regular objectives.

Related publications

- Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR'20 & LMCS) "Games Where You Can Play Optimally with Arena-Independent Finite Memory"
- Bouyer, Randour, V. (STACS'22 & TheoretiCS) "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs"

Limits

Wide applicability, but...

- not fully effective;
- in general, no tight memory requirements for each player.

II. Precise memory requirements of classes of objectives

II. Precise memory requirements of classes of objectives

- ω -regular objectives
- Observation: memory requirements not settled
- **I** Regular objectives (\approx DFAs)
 - Effective characterization of precise memory structures
 - Existence of small structures is NP-complete
- 2 Objectives recognizable by deterministic Büchi automata
 - ► Effective characterization of "no memory for \mathcal{P}_1 "
 - Decidable in polynomial time

Regular objectives

Well-understood ω -regular objectives: *Muller conditions*, focusing on what is seen **infinitely often**. ^{22, 23, 24}

E.g., $b^*ab^*aC^{\omega}$ is not a Muller condition.

Missing pieces

Alternative quest: objectives where "finite prefixes matter".

We consider the "simplest" ones.

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set $C^{\omega} \setminus LC^{\omega}$.

Expressible as standard deterministic finite automata.

²²Gurevich and Harrington, "Trees, Automata, and Games", 1982.

²³Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

²⁴Casares, Colcombet, and Lehtinen, "On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games", 2022.

Question

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives in any arena. Compute minimal ones.

Ideas

- A DFA recognizing the language, taken as a memory structure, always suffices for both players
 (≈ usual approach: taking the product of the arena and the DFA).
- But can be much smaller in general!
- Properties linked to the Myhill-Nerode congruence.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

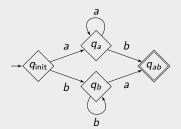
Comparing prefixes

For $x, y \in C^*$, $x \leq_W y$ if for all $z \in C^\omega$, $xz \in W \Longrightarrow yz \in W$.

I.e., y has more winning continuations than x; better situation.

Example

Let W be the regular **reachability** objective induced by this DFA.



E.g., $\varepsilon \prec_W a$, a and b are incomparable for \preceq_W .

Necessary condition

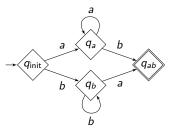
Let $W \subseteq C^{\omega}$ be an objective, $\mathcal{M} = (M, m_{\mathsf{init}}, \alpha_{\mathsf{upd}})$ be a memory structure.

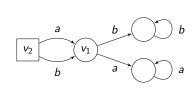
Lemma

For \mathcal{M} to suffice for \mathcal{P}_1 , W needs to be \mathcal{M} -strongly-monotone (" \mathcal{M} distinguishes incomparable words"), i.e.,

if
$$x, y \in C^*$$
 are incomparable for \leq_W , then $\alpha^*_{\sf upd}(m_{\sf init}, x) \neq \alpha^*_{\sf upd}(m_{\sf init}, y)$.

Why? We can build an arena in which distinguishing x and y is critical.





Characterizations

Theorem

Let W be a **regular safety objective**.

A memory structure $\mathcal M$ suffices in all arenas for $\mathcal P_1$ if and only if W is $\mathcal M$ -strongly-monotone.

Theorem

Let W be a regular reachability objective.

Memory structure \mathcal{M} suffices in all arenas for \mathcal{P}_1 if and only if W is \mathcal{M} -strongly-monotone and W is \mathcal{M} -progress-consistent.

Computational complexity

Decision problems

Input: An automaton \mathcal{D} inducing the regular **reachability** (or **safety**) objective W and $k \in \mathbb{N}$.

Question: \exists a memory structure \mathcal{M} with $\leq k$ states that suffices for W?

Thanks to the "effectiveness" of the two properties, we showed that:

Theorem

These problems are NP-complete.

Implementation of algorithms²⁵ that find minimal memory structures for regular objectives, using a **SAT solver**.

²⁵https://github.com/pvdhove/regularMemorvRequirements

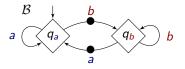
II. Precise memory requirements of classes of objectives

- ω -regular objectives
- Observation: memory requirements not settled
- **1** Regular objectives (\approx DFAs)
 - Effective characterization of precise memory structures
 - Existence of small structures is NP-complete
- 2 Objectives recognizable by deterministic Büchi automata
 - ► Effective characterization of "no memory for \mathcal{P}_1 "
 - Decidable in polynomial time

Deterministic Büchi automata

A deterministic Büchi automaton \mathcal{B} on \mathcal{C}

- reads **infinite** words (in C^{ω}),
- accepts words that see infinitely many Büchi transitions



$$\mathcal{L}(\mathcal{B}) = \{ w \in \{a, \frac{b}{b}\}^{\omega} \mid w \text{ sees } \infty \text{ly many } a \text{ and } \infty \text{ly many } \frac{b}{b} \}$$

Question

Given \mathcal{B} , can \mathcal{P}_1 win without memory for objective $W = \mathcal{L}(\mathcal{B})$? (Is $\mathcal{L}(\mathcal{B})$ half-positional?)

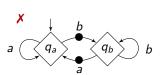
Results

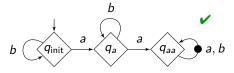
Let \mathcal{B} be a **deterministic Büchi automaton**.

Theorem

For objective $W = \mathcal{L}(\mathcal{B})$, \mathcal{P}_1 does not need memory **if and only if**

- all prefixes are comparable for \leq_W ,
- W is progress-consistent, and
- W is recognized by its prefix classifier as a DBA.





Polynomial-time algorithm

Can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

Part II: Summary

- Tools to study memory requirements of classes of ω -regular objectives.
- Effective characterizations for DFAs and DBAs.
- Decidability and complexity of the related decision problems.

Related publications

- Bouyer, Fijalkow, Randour, V. (Accepted to ICALP'23) "How to Play Optimally for Regular Objectives?"
- Bouyer, Casares, Randour, V. (CONCUR'22, invited to LMCS)
 "Half-Positional Objectives Recognized by Deterministic Büchi Automata"

Future works

- (Part I) General results for arena-dependent memory requirements.
 - Observing edges rather than colors.
 - ▶ Well-behaved nondeterminism (history-determinism). 26
- (Part II) Automatically compute minimal memory structures for all ω -regular objectives?
- More expressive **settings** (e.g., concurrent²⁷ games).
- More expressive strategy models (e.g., pushdown²⁸ automata).

Thanks!

 $^{^{26}} Boker \ and \ Lehtinen, \ "When \ a \ Little \ Nondeterminism \ Goes \ a \ Long \ Way: \ An \ Introduction \ to \ History-Determinism", \ 2023.$

²⁷Bordais, Bouyer, and Le Roux, "Optimal Strategies in Concurrent Reachability Games", 2022.

²⁸Walukiewicz, "Pushdown Processes: Games and Model-Checking", 2001.