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Context: synthesis

• An (incomplete, reactive) system,
• living in an (uncontrollable) environment,
• with a purpose/specification.
 Modeling through a zero-sum game.
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Zero-sum
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Two players
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Solving
the game

S wins +
winning
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S cannot
enforce a win
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Games

Zero-sum turn-based games on graphs

c

bba

a

• Colors C , edge-colored arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of player P` is a function σ : Hists`(A)→ E .
A strategy σ of P1 is winning for W from v ∈ V if all infinite paths from
v consistent with σ induce an infinite word in W .
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Strategy complexity

• Given a game and an initial vertex  who can win?
• To decide it, exhibit a winning strategy of a player.
• Issues:
I strategies σ : Hists`(A)→ E may not have a finite representation;
I there are infinitely many of them.

Strategy complexity
Given an objective, understand if simple strategies suffice to win,
or if complex strategies are required to win (when possible).

Desirable properties:
• winning strategies use bounded information (finite representation!);
• computable bounds on this information (finite number of strategies!).
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Simple strategies

Memoryless strategies
A strategy is memoryless if it makes decisions based only on the current
arena vertex (σ : V` → E ).

Finite-memory strategies
A strategy is finite-memory if it makes decisions based on
• the current arena vertex, and
• the current state of a finite memory structure.
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Memory structures

Memory structures
Finite memory structureM = (M,minit ∈ M, αupd). Two kinds:
• Given A = (V1,V2,E ), memory structureM (for A) is chaotic if

αupd : M × E → M.

• Memory structureM is chromatic if

αupd : M × C → M.

Chaotic structures may be more succinct1 but harder to reason with.
 In what follows, memory structures are chromatic.
GivenM and an arena A = (V1,V2,E ), a next-action function

αnxt : V` ×M → E
defines a strategy.

1Casares, “On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller
Conditions”, 2022.
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Examples

E.g., chromatic structure to remember whether a or b was last seen:

a b

a

b

m1 m2

Memoryless strategies use memory structure C .
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Example

C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}

a, c b, c

a

b

m1 m2

σ(v1,m1) =
c−→ v2

σ(v2,m1) =
b−→ v2

σ(v2,m2) =
c−→ v1

σ(v1,m2) =
a−→ v2

a b

v1 v2c

c

 Memoryless strategies do not suffice. . .
but two memory states do! There is a winning strategy σ : V1 ×M → E .
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Finite-memory determinacy

Memoryless determinacy

An objective is memoryless-determined if in all arenas,
memoryless strategies suffice for both players.

Finite-memory determinacy

An objective is finite-memory-determined if in all arenas,
finite-memory strategies suffice for both players.

We require uniformity of the strategies.

Various definitions depending on
• the class of arenas considered (finite, infinite, finitely branching. . . ),
• whether we focus on both players or a single player.
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State of the art: memoryless determinacy

Many “classical” objectives are memoryless-determined:
reachability, Büchi, parity, energy, mean payoff, discounted sum. . .

Memoryless determinacy is well-understood:

• Sufficient conditions for both players,2 for a single player.3

• Characterizations for both players over finite4/infinite5 arenas,
for a single player over infinite arenas.6

2Gimbert and Zielonka, “When Can You Play Positionally?”, 2004; Aminof and Rubin, “First-cycle games”, 2017.
3Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006; Bianco et al., “Exploring the boundary of

half-positionality”, 2011.
4Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
5Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
6Ohlmann, “Characterizing Positionality in Games of Infinite Duration over Infinite Graphs”, 2023.
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State of the art: finite-memory determinacy

• Finite-memory determinacy is understood for specific objectives,7
but few results of wide applicability.8

• Central class: ω-regular objectives. Examples with C = {a, b}:
ω-regular expressions

b∗ab∗aCω

ω-automata

qinit qa qaa

a•

b
•

a•b a, b•

Linear temporal logic (LTL)

GFa

Theorem9, 10

All ω-regular objectives are finite-memory-determined.

7Chatterjee, Randour, and Raskin, “Strategy synthesis for multi-dimensional quantitative objectives”, 2014; Colcombet,
Fijalkow, and Horn, “Playing Safe”, 2014; Bouyer, Hofman, et al., “Bounding Average-Energy Games”, 2017.

8Le Roux, Pauly, and Randour, “Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions”,
2018; Bouyer, Le Roux, and Thomasset, “Finite-Memory Strategies in Two-Player Infinite Games”, 2022.

9Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
10Rabin, “Decidability of Second-Order Theories and Automata on Infinite Trees”, 1969.
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Significance

Consequences of a fine-grained understanding of strategy complexity:

• Decidability of logical theories through FM det. (see monadic
second-order logic, linked to ω-regular objectives11).

• Practical synthesis problems through FM det. (see, e.g., LTL
specifications12).

• At the core of algorithms to solve games (see, e.g., parity games13).

• Controllers as compact as possible.

11Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
12Pnueli, “The Temporal Logic of Programs”, 1977.
13Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Overview of our contributions

I. General conditions
for finite-memory determinacy

• Arbitrary objectives
• Algebraic characterizations of

the sufficiency of a memory
structure for both players

• Theoretical tools to help find
memory structures

• Generalizations of memoryless
determinacy results

II. Precise memory requirements
of classes of objectives

• ω-regular objectives
• Observation: memory
requirements not settled

1 Regular objectives (≈ DFAs)

2 Objectives recognizable by
deterministic Büchi automata
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One-to-two-player lift

One-to-two-player memoryless lift (finite arenas)14

Let W ⊆ Cω be an objective. If
• in all one-player arenas of P1, P1 has memoryless optimal strategies,
• in all one-player arenas of P2, P2 has memoryless optimal strategies,

then both players have memoryless optimal strategies in two-player arenas.

Complexity does not increase if an opponent is added!
Easy to recover memoryless determinacy of, e.g., parity15 and
mean-payoff 16 objectives.

What about finite-memory determinacy?

14Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
15Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
16Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour)



What about finite-memory determinacy?

• Counterexample to a one-to-two-player lift for FM determinacy .
• In the counterexample, the size of the memory depends on the size
of the one-player arenas. Motivates the restriction to. . .

Arena-independent finite memory
An objective is arena-independent finite-memory determined if

there exists a memory structure M such that for all arenas A,

strategies based onM suffice to win in A.

• Requires chromatic memory structures.
• Still holds for ω-regular objectives!
• One-to-two-player lift works!
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One-to-two-player finite-memory lift

One-to-two-player finite-memory lift (finite arenas)
Let W ⊆ Cω be an objective,M be a memory structure. If
• in all one-player arenas of P1, P1 has optimal strategies based onM,
• in all one-player arenas of P2, P2 has optimal strategies based onM,

then both players have optimal strategies based onM in two-player arenas.
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One-to-two-player lifts

When does strategy complexity in two-player zero-sum games
reduce to strategy complexity in one-player games?

Arenas\Str. comp. Memoryless FM “∃M∀A” Mildly growing
Finite [GZ05]17 [BLORV22] [Koz22]18

Infinite [CN06]19 [BRV23]
Finite stochastic [GZ09]20 [BORV21]

17Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
18Kozachinskiy, “One-To-Two-Player Lifting for Mildly Growing Memory”, 2022.
19For prefix-independent objectives; Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
20Gimbert and Zielonka, “Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global

Preferences”, 2009.
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Link with automaton representation

Let W ⊆ Cω be an objective.

(Almost) Myhill-Nerode congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇐⇒ yz ∈W .

I.e., x and y have the same winning continuations; as good as each other.

Properties

• If W is ω-regular, then ∼W has finitely many equivalence classes.
• There is a DFA SW “prefix classifier” associated with ∼W .

SW might not “recognize” the language ( 6= languages of finite words). . .
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Two examples

. . . but we found a decomposition with prefix classifier × memory
structure.
Let C = {a, b}.

Objective Prefix classifier SW Sufficient memory

W = b∗ab∗aCω

b b

Ca a C

W = “a and b ∞ly often” C b a
a•
b
•
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Main result

Let W ⊆ Cω be an objective.

Theorem
If a finite memory structureM suffices to play optimally in infinite arenas
for both players, then

W is recognized by a parity automaton (SW ⊗M, p)

for some p : M × C → {0, . . . , n}.

In particular,
W is chromatic-finite-memory-determined over infinite arenas

⇐⇒
W is ω-regular.

Generalizes [CN06]21 (prefix-independent, memoryless case).
21Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Part I: Summary
• Useful notion of arena-independent FM determinacy.
• General characterizations over finite and infinite arenas, theoretical
tools to determine memory requirements.
• Central place of ω-regular objectives.

Related publications
• Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR’20 & LMCS) “Games Where You

Can Play Optimally with Arena-Independent Finite Memory”
• Bouyer, Randour, V. (STACS’22 & TheoretiCS) “Characterizing Omega-Regularity

through Finite-Memory Determinacy of Games on Infinite Graphs”

Limits
Wide applicability, but. . .
• not fully effective;
• in general, no tight memory requirements for each player.
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II. Precise memory requirements
of classes of objectives
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I. General conditions
for finite-memory determinacy

• Arbitrary objectives
• Algebraic characterizations of
the sufficiency of a memory
structure for both players
• Theoretical tools to help find
memory structures
• Generalizations of memoryless
determinacy results

II. Precise memory requirements
of classes of objectives

• ω-regular objectives
• Observation: memory
requirements not settled

1 Regular objectives (≈ DFAs)
I Effective characterization of

precise memory structures
I Existence of small

structures is NP-complete
2 Objectives recognizable by

deterministic Büchi automata
I Effective characterization of

“no memory for P1”
I Decidable in polynomial time

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour)



Regular objectives
Well-understood ω-regular objectives: Muller conditions, focusing on what
is seen infinitely often.22, 23, 24
E.g., b∗ab∗aCω is not a Muller condition.

Missing pieces
Alternative quest: objectives where “finite prefixes matter”.

We consider the “simplest” ones.

Regular objectives

• A regular reachability objective is a set LCω with L ⊆ C∗ regular.
• A regular safety objective is a set Cω \ LCω.

Expressible as standard deterministic finite automata.
22Gurevich and Harrington, “Trees, Automata, and Games”, 1982.
23Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
24Casares, Colcombet, and Lehtinen, “On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in

Muller Games”, 2022.
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Question

Memory requirements of regular objectives
Characterize the memory structures that suffice to make optimal
decisions for regular objectives in any arena. Compute minimal ones.

Ideas
• A DFA recognizing the language, taken as a memory structure, always
suffices for both players
(≈ usual approach: taking the product of the arena and the DFA).
• But can be much smaller in general!
• Properties linked to the Myhill-Nerode congruence.

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour)



Comparing words
Let W ⊆ Cω be an objective.

Comparing prefixes
For x , y ∈ C∗, x �W y if for all z ∈ Cω, xz ∈W =⇒ yz ∈W .

I.e., y has more winning continuations than x ; better situation.

Example
Let W be the regular reachability objective induced by this DFA.

qinit

qa

qb

qab

a

b

b

a

a

b

E.g., ε ≺W a,
a and b are incomparable for �W .
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Necessary condition
Let W ⊆ Cω be an objective,M = (M,minit, αupd) be a memory structure.

Lemma
ForM to suffice for P1, W needs to beM-strongly-monotone (“M
distinguishes incomparable words”), i.e.,

if x , y ∈ C∗ are incomparable for �W ,
then α∗upd(minit, x) 6= α∗upd(minit, y).

Why? We can build an arena in which distinguishing x and y is critical.

qinit

qa

qb

qab

a

b

b

a

a

b

v2 v1

a

b

b

a

b

a
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Characterizations

Theorem
Let W be a regular safety objective.

A memory structureM suffices in all arenas for P1
if and only if

W isM-strongly-monotone.

Theorem
Let W be a regular reachability objective.

Memory structureM suffices in all arenas for P1
if and only if

W isM-strongly-monotone and
W isM-progress-consistent.
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Computational complexity

Decision problems
Input: An automaton D inducing the regular reachability (or safety)
objective W and k ∈ N.
Question: ∃ a memory structureM with ≤ k states that suffices for W ?

Thanks to the “effectiveness” of the two properties, we showed that:

Theorem
These problems are NP-complete.

Implementation of algorithms25 that find minimal memory structures for
regular objectives, using a SAT solver.

25https://github.com/pvdhove/regularMemoryRequirements
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I. General conditions
for finite-memory determinacy

• Arbitrary objectives
• Algebraic characterizations of
the sufficiency of a memory
structure for both players
• Theoretical tools to help find
memory structures
• Generalizations of memoryless
determinacy results

II. Precise memory requirements
of classes of objectives

• ω-regular objectives
• Observation: memory
requirements not settled

1 Regular objectives (≈ DFAs)
I Effective characterization of

precise memory structures
I Existence of small structures is

NP-complete
2 Objectives recognizable by
deterministic Büchi automata
I Effective characterization

of “no memory for P1”
I Decidable in polynomial

time
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Deterministic Büchi automata

A deterministic Büchi automaton B on C
• reads infinite words (in Cω),
• accepts words that see infinitely many Büchi transitions •.

qa qb

B

a b

b•

a•

L(B) = {w ∈ {a, b}ω | w sees ∞ly many a and ∞ly many b}

Question
Given B, can P1 win without memory for objective W = L(B)?
(Is L(B) half-positional?)
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Results

Let B be a deterministic Büchi automaton.

Theorem
For objective W = L(B), P1 does not need memory if and only if
• all prefixes are comparable for �W ,
• W is progress-consistent, and
• W is recognized by its prefix classifier as a DBA.

qa

7

qba b
b•
a•

qinit

4

qa qaa
a a

b

b

a, b•

Polynomial-time algorithm
Can be decided in O(|B|4) time.
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Part II: Summary

• Tools to study memory requirements of classes of ω-regular objectives.
• Effective characterizations for DFAs and DBAs.
• Decidability and complexity of the related decision problems.

Related publications

• Bouyer, Fijalkow, Randour, V. (Accepted to ICALP’23) “How to Play
Optimally for Regular Objectives?”

• Bouyer, Casares, Randour, V. (CONCUR’22, invited to LMCS)
“Half-Positional Objectives Recognized by Deterministic Büchi Automata”
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Future works

• (Part I) General results for arena-dependent memory requirements.
I Observing edges rather than colors.
I Well-behaved nondeterminism (history-determinism).26

• (Part II) Automatically compute minimal memory structures for all
ω-regular objectives?

• More expressive settings (e.g., concurrent27 games).

• More expressive strategy models (e.g., pushdown28 automata).

Thanks!

26Boker and Lehtinen, “When a Little Nondeterminism Goes a Long Way: An Introduction to History-Determinism”, 2023.
27Bordais, Bouyer, and Le Roux, “Optimal Strategies in Concurrent Reachability Games”, 2022.
28Walukiewicz, “Pushdown Processes: Games and Model-Checking”, 2001.
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