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Plan

Motivate the fields of verification and synthesis.

Explain the focus of my thesis:
Strategy Complexity of Zero-Sum Games on Graphs.

Give some intuition about our results.
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Reactive systems

® Reactive systems = systems that continuously interact with their
environment (elevator, web server, robot vacuum cleaner. . .).

Must achieve an objective

> using their capabilities (controllable events);
> while reacting to events from their environment (uncontrollable events).

Subject to bugs and errors, sometimes serious.

Solution 1: tests? Efficient, but not exhaustive.

Solution 2: verification and synthesis.
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Verification

® Verification aims for a formal proof that a system achieves its
objective, no matter what happens in the environment.

® The objective describes the desired behaviors.

® Works with abstractions/models of systems.

Reactive
system

Formal

model S 4 S satisfies ¢

Verification

algorithm

Logical

Objective formula

X S does not satisfy ¢

® Downside: requires a “complete” system as an input.
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Synthesis

e Synthesis seeks to generate a controller achieving the objective.
® Accepts an “incomplete” description of the system.
e Correct controller by construction.

® System and environment are players; the environment is antagonistic.

~» Modeling through a zero-sum game.

Incomplete S wins +
Two players
system S

v winning
> < / strategy
. 4 Zero-sum Solving
Environment —
game the game

Objective

S cannot
Game objective enforce a win
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Zero-sum games on graphs

® Graph (called arena) describing the states of the system.

(]

Vs

® Two players:

1 [0
O

» Py (the system) controls the Os;
» P, (the environment) controls the [Js.

® Interaction of infinite duration between the players.
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Zero-sum games on graphs

® Graph (called arena) describing the states of the system.
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Example of objective

Game objective: P; should win if and only if the system achieves its
objective. We add events to the edges.

Objective for Q: reach some ﬁ (Lazy but a good start!)

IR OO

® Can P; guarantee this from v; by making decisions only in ()s?
Yes, for instance by going to v», and then from v5 to vg if necessary.

e Can Py guarantee this from v, by making decisions only in ()s?
No, because the opponent may stay in vj.
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Formally

Zero-sum turn-based games on graphs

Colors (events) C, arena A = (Vy, V5, E).
c Two players P; (O) and P> ().

a ® Objective of Py is aset W C C¥.
e Zero-sum: objective of Py is C¥ \ W.

In the previous example:

c={# N

W = Reach(§#) = {ciz...€ C¥|3i>1,¢ci= &}
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Formally

Zero-sum turn-based games on graphs

Colors (events) C, arena A = (V4, Vo, E).

Two players P; (O) and P> (0OJ).
Infinite interaction
~ infinite word w = babbc... € C¥.

Objective of Py is aset W C C¥.

e Zero-sum: objective of Py is C¥\ W.

Synthesis

Given an arena (with an initial vertex) and an objective, we want to know
if P1 has a strategy winning against all strategies of the opponent.
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Central object: strategies

In general, a strategy is an object that makes decisions
using information about the past interaction.

A history is a sequence vo — v; — ... = v, of vertices/edges of A.

Definition
A strategy of P; is a function
o {histories of A ending in O} — E.

To solve a game, try to exhibit a winning strategy to show that a player
wins. But. ..

* strategies may be hard to describe (set of histories is infinite (5);

e there are infinitely many strategies (cannot try them all ).
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Describing strategies

[, v33
IR OO0

In the example, a winning strategy only looks at the current (:

o: {histories ing in O} {vi,vs, v} — E.

Easy to describe. Such a strategy is called memoryless.
Not a coincidence!

Memoryless determinacy

For a reachability objective, in all arenas, when winning is possible for a
player, it is always possible to win with a memoryless strategy!
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Memoryless determinacy

Property
An objective has the property of

memoryless determinacy

if, whenever a player has a winning strategy, this player even has a
memoryless winning strategy (no matter the arena).

This strong property also holds for many other (complex) objectives!
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Why is memoryless determinacy nice?

Main advantage: easy algorithm to solve the games
~ solves the synthesis problem for memoryless-determined objectives!

Algorithm (for a finite arena A)

® P; and P> have only finitely many memoryless strategies.

® Enumerate the memoryless strategies of P1, and check if there is one
that wins against all memoryless strategies of Ps.

~~ Not the most efficient for Reach(§# ), but not bad for more complex
objectives!

But unfortunately, memoryless strategies do not always suffice to win @
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Memoryless strategies do not always suffice (1/2)

More complex objective for the vacuum cleaner:

see both J and ’ infinitely often. (Still a bit simple but good effort!)

Formally, C = {j, ’,-}
W={cec...ec C¥|3I%i,c= j/\ﬂoo G = .}

In this arena, P; can win from vy, but not with a memoryless strategy.
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Memoryless strategies do not always suffice (2/2)

Objective: see both j and ’ infinitely often.

Compromise: use memory, but a finite amount.
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Finite-memory strategies

® Even if memoryless strategies do not suffice to win, can we condense
the information used by winning strategies in a finite way?

® Loss of information (not the full history), but hopefully sufficient!

We store information in finite memory structures.

® Their state is automatically updated given the events from game.

® The current state gives information to help make decisions.
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Back to the previous example

We define a winning strategy

o:{vi,w} x{my,m} — E.

Vi V2

j ’ o(vy, m) = !> Vs
O'(VQ, m1) = l) Vo

N
J ’ U(V2, m2) = — WV
- - O'(Vl, m2) = i) Vo

® This memory structure suffices to win in this arena.

® In all arenas, if winning is possible, finite memory suffices to win!
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Finite-memory determinacy

An objective has the property of
finite-memory determinacy

if, whenever a player has a winning strategy, this player also has
a finite-memory winning strategy.

Why is it nice?

When the memory structure is known, finite-memory determinacy also
makes the synthesis problem solvable!
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Classifying objectives

Finite-memory
determinacy

Memoryless
determinacy
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Strategy complexity

Given an objective, understand if simple strategies suffice to win,
or if complex strategies are required to win when possible.

Memoryless determinacy is well-understood.!:2:3:4.5.6

~> Easy to prove that an objective is memoryless-determined or not.

Finite-memory determinacy is less well-understood.

L Aminof and Rubin, “First-cycle games”, 2017.

zKopczyﬁski, “Half-Positional Determinacy of Infinite Games”, 2006.

3Bianco et al., “Exploring the boundary of half-positionality”, 2011.

4Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory", 2005.
5Colcombet and Niwifiski, “On the positional determinacy of edge-labeled games”, 2006.
GOhImann, “Characterizing Positionality in Games of Infinite Duration over Infinite Graphs”, 2023.
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Contributions

In the thesis: focus on finite-memory strategies.

Research agenda

Understand for which objectives finite-memory strategies suffice.

When they suffice, find small sufficient memory structures
(i.e., the minimal amount of information to make optimal decisions).

Part | Part Il
Theoretical results ~~ Practical results ~~
characterizations, boundaries; automatically compute
as few hypotheses as possible. small memory structures

for concrete classes of objectives.
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Part |: General conditions
for finite-memory determinacy
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One-player games

® A simpler kind of game is a one-player game, in which a single

player controls all the vertices (roughly, a graph).

Vi V2 V3
Vg Vs Vo
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One-player games
® A simpler kind of game is a one-player game, in which a single
player controls all the vertices (roughly, a graph).

® Easier to prove memoryless determinacy in one-player games, but
seemingly weaker than in two-player games:

Finite-memory
determinacy

Memoryless
determinacy

One-player
memoryless det.

Yet. ..
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Nice reduction for memoryless determinacy

... they coincide [GZ05]!

Finite-memory
determinacy

Memoryless
determinacy

One-player
memoryless det.

~> Reduces a problem about strategy complexity in two-player games to a
problem in one-player games! Very useful.

What about finite-memory determinacy?

"Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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Not as nice ()

We found an objective W such that:
e finite-memory strategies suffice in all one-player games,

® but infinite memory is required in a two-player game.

oW

th

Finite-memory
determinacy ~_

Memoryless
determinacy

I
One-player
memoryless det.

For W, the size of the memory depends on the size of the arena. ..
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Restriction of finite-memory determinacy

Let W be an objective.
Reminder: finite-memory determinacy

Objective W is finite-memory determined if

for all arenas A, there exists a finite memory structure M
such that M suffices to win in A.

Arena-independence

Objective W is arena-independent finite-memory determined if

there exists a finite memory structure M such that for all arenas A,
M suffices to win in A.

Stronger property (M cannot depend on A).

Strategy Complexity of Zero-Sum Games on Graphs
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Arena-independent finite-memory determinacy

Between memoryless and finite-memory determinacy:

Finite-memory
determinacy Arena-independent
finite-memory

determinacy

One-player
arena-independent
finite-memory det.

Memoryless
determinacy

It contains oo(l) A oo(’) (with M =

Also reducible to the same property, but over one-player games!
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Nice property

One-to-two-player arena-independent finite-memory lift

Let W be an objective and My, M> be memory structures. If

® in one-player arenas of P;, P; has winning strategies using M,

® in one-player arenas of P, P> has winning strategies using Mo,
then both players have winning strategies using M; ® M5 in two-player

arenas.

Robust property: holds over the classes of finite and infinite arenas.

Applicability?

Even if stronger than finite-memory determinacy, still encompasses many
objectives. Not the least being. ..
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w-regular objectives

Important class of objectives

The w-regular languages are a natural generalization of regular languages
to languages of infinite words.

Theorem?

The w-regular objectives are arena-independent finite-memory determined.

~» Synthesis with such objectives can be done!

8Biichi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969; Rabin, “Decidability of
Second-Order Theories and Automata on Infinite Trees”, 1969; Gurevich and Harrington, “Trees, Automata, and Games”, 1982.

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour) 29 / 38



w-regular objectives

Using this theorem, w-regular objectives are somewhere there:

w-regular
objectives

Finite-memory
determinacy Arena-independent
finite-memory
determinacy
Memoryless

determinacy

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour) 30/ 38



Strategic characterization

Over games played on infinite arenas, we have:

Contribution

An objective is w-regular
<~
it is arena-independent finite-memory determined.

w-regular
objectives

Il
Arena-independent
finite-memory
determinacy

One-player
arena-independent
finite-memory det.

Finite-memory
determinacy

Memoryless
determinacy
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Summary of Part |

Contributions

® Characterizations of kinds of finite-memory determinacy in various
contexts.

® Strengthens the links between memory structures and representations
of the objectives.

* Generalizes [GZ05],° [CN06]° (about memoryless strategies).

Related publications

® Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR'20 & LMCS) “Games Where You
Can Play Optimally with Arena-Independent Finite Memory”

® Bouyer, Randour, V. (STACS'22 & TheoretiCS) “Characterizing Omega-Regularity
through Finite-Memory Determinacy of Games on Infinite Graphs”

9Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory", 2005.
10Colcombet and Niwifiski, “On the positional determinacy of edge-labeled games”, 2006.
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Part [l: How many memory states
for precise objectives?
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Regular languages (1/2)

Automata are used to define sets of finite words. They accept the finite
words that can be read from the initial state 4<> to the final state <>

This automaton
® accepts aab v/ ® accepts baab v/

® rejects aa X ° ..
This automaton accepts exactly finite words that see both a and b.
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Regular languages (2/2)
Sets of words that can be defined by an automaton are called regular.

Regular objectives

Assume the objective of P; is to achieve a word from a regular language L
(ie.,, W=LC¥).
What is a minimal memory structure that suffices in all arenas?

The whole automaton suffices as a memory structure, but not necessary!

Contributions

® Characterization of the memory structures through properties of the
language.

® This problem can be solved with an algorithm, but not in an
efficient way (the related decision problem is NP-complete).
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Implementation

Algorithms that find minimal memory structures for regular objectives for
both players, starting from an automaton, using a SAT solver.

M = memReq.smallest_memory_safety(D)
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Summary of Part Il

Contributions

® Ways to automatically compute the smallest memory structures for
classes of w-regular objectives.

® Work on regular objectives and on deterministic Biichi automata.

Related publications

® Bouyer, Fijalkow, Randour, V. (Accepted to ICALP’23)
“How to Play Optimally for Regular Objectives?”

® Bouyer, Casares, Randour, V. (CONCUR'22) “Half-Positional Objectives
Recognized by Deterministic Biichi Automata”
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Conclusion

Future works

® More expressive game models (e.g., what if both players can make
decisions at the same time?).

® More expressive strategy models (beyond finite-state machines).

® Compute minimal memory structures of all w-regular objectives.

Thank you
for your attention!
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