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Plan

1 Motivate the fields of verification and synthesis.

2 Explain the focus of my thesis:
Strategy Complexity of Zero-Sum Games on Graphs.

3 Give some intuition about our results.
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Reactive systems

• Reactive systems = systems that continuously interact with their
environment (elevator, web server, robot vacuum cleaner. . . ).

• Must achieve an objective
I using their capabilities (controllable events);
I while reacting to events from their environment (uncontrollable events).

• Subject to bugs and errors, sometimes serious.
• Solution 1: tests? Efficient, but not exhaustive.
• Solution 2: verification and synthesis.
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Verification

• Verification aims for a formal proof that a system achieves its
objective, no matter what happens in the environment.
• The objective describes the desired behaviors.
• Works with abstractions/models of systems.

Formal
model S

Reactive
system

Verification
algorithm

S satisfies ϕ

Logical
formula ϕ S does not satisfy ϕObjective

4

7

• Downside: requires a “complete” system as an input.
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Synthesis

• Synthesis seeks to generate a controller achieving the objective.
• Accepts an “incomplete” description of the system.
• Correct controller by construction.
• System and environment are players; the environment is antagonistic.

 Modeling through a zero-sum game.

Incomplete
system S

Environment

Objective

Zero-sum
game

Two players

Game objective

Solving
the game

S wins +
winning
strategy

S cannot
enforce a win

4

7
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Zero-sum games on graphs

• Graph (called arena) describing the states of the system.

v1 v2 v3

v6v5v4

• Two players:
I P1 (the system) controls the ©s;
I P2 (the environment) controls the �s.

• Interaction of infinite duration between the players.

P1 P2 P1 P2 P1 P1 P1 · · ·

v1 v4 v1 v2 v5 v6 v6 · · ·
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Example of objective

Game objective: P1 should win if and only if the system achieves its
objective. We add events to the edges.

Objective for : reach some . (Lazy but a good start!)

v1 v2 v3

v6v5v4

• Can P1 guarantee this from v1 by making decisions only in ©s?
Yes, for instance by going to v2, and then from v5 to v6 if necessary.
• Can P1 guarantee this from v4 by making decisions only in ©s?

No, because the opponent may stay in v4.
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Formally

Zero-sum turn-based games on graphs

c

bba

a

• Colors (events) C , arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

In the previous example:

C = { , },

W = Reach( ) = {c1c2 . . . ∈ Cω | ∃i ≥ 1, ci = }.

Synthesis
Given an arena (with an initial vertex) and an objective, we want to know
if P1 has a strategy winning against all strategies of the opponent.
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Central object: strategies

In general, a strategy is an object that makes decisions
using information about the past interaction.

A history is a sequence v0
c1−→ v1

c2−→ . . .
cn−→ vn of vertices/edges of A.

Definition
A strategy of P1 is a function

σ : {histories of A ending in ©} → E .

To solve a game, try to exhibit a winning strategy to show that a player
wins. But. . .
• strategies may be hard to describe (set of histories is infinite );
• there are infinitely many strategies (cannot try them all ).
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Describing strategies

v1 v2 v3

v6v5v4

In the example, a winning strategy only looks at the current ©:

σ :
((((((((((((((
{histories of A ending in ©} {v1, v5, v6} → E .

Easy to describe. Such a strategy is called memoryless.
Not a coincidence!
Memoryless determinacy
For a reachability objective, in all arenas, when winning is possible for a
player, it is always possible to win with a memoryless strategy!
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Memoryless determinacy

Property
An objective has the property of

memoryless determinacy

if, whenever a player has a winning strategy, this player even has a
memoryless winning strategy (no matter the arena).

This strong property also holds for many other (complex) objectives!
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Why is memoryless determinacy nice?

Main advantage: easy algorithm to solve the games
 solves the synthesis problem for memoryless-determined objectives!

Algorithm (for a finite arena A)

• P1 and P2 have only finitely many memoryless strategies.
• Enumerate the memoryless strategies of P1, and check if there is one
that wins against all memoryless strategies of P2.

 Not the most efficient for Reach( ), but not bad for more complex
objectives!
But unfortunately, memoryless strategies do not always suffice to win .
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Memoryless strategies do not always suffice (1/2)

More complex objective for the vacuum cleaner:

see both and infinitely often. (Still a bit simple but good effort!)

Formally, C = { , , },

W = {c1c2 . . . ∈ Cω | ∃∞i , ci = ∧ ∃∞j , cj = }.

In this arena, P1 can win from v1, but not with a memoryless strategy.

v1 v2
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Memoryless strategies do not always suffice (2/2)

Objective: see both and infinitely often.

v1 v2

There are 4 memoryless strategies, inducing from v1:

•
•

•
•

Compromise: use memory, but a finite amount.
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Finite-memory strategies

• Even if memoryless strategies do not suffice to win, can we condense
the information used by winning strategies in a finite way?
• Loss of information (not the full history), but hopefully sufficient!

We store information in finite memory structures.

m1 m2

• Their state is automatically updated given the events from game.
• The current state gives information to help make decisions.
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Back to the previous example
We define a winning strategy

σ : {v1, v2} × {m1,m2} → E .

m1 m2

σ(v1,m1) = −→ v2

σ(v2,m1) = −→ v2

σ(v2,m2) = −→ v1

σ(v1,m2) = −→ v2

v1 v2

• This memory structure suffices to win in this arena.
• In all arenas, if winning is possible, finite memory suffices to win!
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Finite-memory determinacy

An objective has the property of

finite-memory determinacy

if, whenever a player has a winning strategy, this player also has
a finite-memory winning strategy.

Why is it nice?
When the memory structure is known, finite-memory determinacy also
makes the synthesis problem solvable!
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Classifying objectives

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( )
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Strategy complexity

Given an objective, understand if simple strategies suffice to win,
or if complex strategies are required to win when possible.

Memoryless determinacy is well-understood.1, 2, 3, 4, 5, 6
 Easy to prove that an objective is memoryless-determined or not.

Finite-memory determinacy is less well-understood.

1Aminof and Rubin, “First-cycle games”, 2017.
2Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006.
3Bianco et al., “Exploring the boundary of half-positionality”, 2011.
4Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
5Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
6Ohlmann, “Characterizing Positionality in Games of Infinite Duration over Infinite Graphs”, 2023.

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour) 20 / 38



Contributions

In the thesis: focus on finite-memory strategies.

Research agenda

1 Understand for which objectives finite-memory strategies suffice.
2 When they suffice, find small sufficient memory structures

(i.e., the minimal amount of information to make optimal decisions).

Part I
Theoretical results  

characterizations, boundaries;
as few hypotheses as possible.

Part II
Practical results  
automatically compute
small memory structures

for concrete classes of objectives.
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Part I: General conditions
for finite-memory determinacy
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One-player games

• A simpler kind of game is a one-player game, in which a single
player controls all the vertices (roughly, a graph).

v1 v2 v3

v6v5v4

4
4

v1 v2

v1 v2 v3

v6v5v4

7
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One-player games
• A simpler kind of game is a one-player game, in which a single
player controls all the vertices (roughly, a graph).
• Easier to prove memoryless determinacy in one-player games, but
seemingly weaker than in two-player games:

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( )

One-player
memoryless det.

?

Yet. . .
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Nice reduction for memoryless determinacy

. . . they coincide [GZ05]7!

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( )

One-player
memoryless det.

=

 Reduces a problem about strategy complexity in two-player games to a
problem in one-player games! Very useful.
What about finite-memory determinacy?

7Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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Not as nice
We found an objective W such that:
• finite-memory strategies suffice in all one-player games,
• but infinite memory is required in a two-player game.

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( )

One-player
memoryless det.

=

WOne-player
finite-memory det.

6=

For W , the size of the memory depends on the size of the arena. . .
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Restriction of finite-memory determinacy

Let W be an objective.

Reminder: finite-memory determinacy
Objective W is finite-memory determined if

for all arenas A, there exists a finite memory structureM
such thatM suffices to win in A.

Arena-independence
Objective W is arena-independent finite-memory determined if

there exists a finite memory structureM such that for all arenas A,
M suffices to win in A.

Stronger property (M cannot depend on A).
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Arena-independent finite-memory determinacy
Between memoryless and finite-memory determinacy:

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( ) Arena-independent

finite-memory
determinacy

One-player
arena-independent
finite-memory det.

=

It contains ∞( ) ∧∞( ) (withM = m1 m2 ).

Also reducible to the same property, but over one-player games!
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Nice property

One-to-two-player arena-independent finite-memory lift
Let W be an objective andM1,M2 be memory structures. If
• in one-player arenas of P1, P1 has winning strategies usingM1,
• in one-player arenas of P2, P2 has winning strategies usingM2,

then both players have winning strategies usingM1 ⊗M2 in two-player
arenas.

Robust property: holds over the classes of finite and infinite arenas.

Applicability?
Even if stronger than finite-memory determinacy, still encompasses many
objectives. Not the least being. . .
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ω-regular objectives

Important class of objectives
The ω-regular languages are a natural generalization of regular languages
to languages of infinite words.

Theorem8

The ω-regular objectives are arena-independent finite-memory determined.

 Synthesis with such objectives can be done!

8Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969; Rabin, “Decidability of
Second-Order Theories and Automata on Infinite Trees”, 1969; Gurevich and Harrington, “Trees, Automata, and Games”, 1982.
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ω-regular objectives

Using this theorem, ω-regular objectives are somewhere there:

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( ) Arena-independent

finite-memory
determinacy

ω-regular
objectives
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Strategic characterization
Over games played on infinite arenas, we have:

Contribution
An objective is ω-regular

⇐⇒
it is arena-independent finite-memory determined.

Reach( )

Memoryless
determinacy

Finite-memory
determinacy ∞( ) ∧∞( ) Arena-independent

finite-memory
determinacy

One-player
arena-independent
finite-memory det.

=

ω-regular
objectives

=
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Summary of Part I

Contributions
• Characterizations of kinds of finite-memory determinacy in various
contexts.
• Strengthens the links between memory structures and representations
of the objectives.
• Generalizes [GZ05],9 [CN06]10 (about memoryless strategies).

Related publications
• Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR’20 & LMCS) “Games Where You

Can Play Optimally with Arena-Independent Finite Memory”
• Bouyer, Randour, V. (STACS’22 & TheoretiCS) “Characterizing Omega-Regularity

through Finite-Memory Determinacy of Games on Infinite Graphs”

9Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
10Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Part II: How many memory states
for precise objectives?
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Regular languages (1/2)

Automata are used to define sets of finite words. They accept the finite
words that can be read from the initial state to the final state .

qinit

qa

qb

qab

a

b

b

a

a

b

a

b

This automaton
• accepts aab 4

• rejects aa 7

• accepts baab 4

• . . .

This automaton accepts exactly finite words that see both a and b.
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Regular languages (2/2)

Sets of words that can be defined by an automaton are called regular.

Regular objectives
Assume the objective of P1 is to achieve a word from a regular language L
(i.e., W = LCω).
What is a minimal memory structure that suffices in all arenas?

The whole automaton suffices as a memory structure, but not necessary!

Contributions
• Characterization of the memory structures through properties of the

language.
• This problem can be solved with an algorithm, but not in an
efficient way (the related decision problem is NP-complete).
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Implementation
Algorithms that find minimal memory structures for regular objectives for
both players, starting from an automaton, using a SAT solver.

D =

M = memReq.smallest_memory_safety(D)

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour) 36 / 38



Summary of Part II

Contributions
• Ways to automatically compute the smallest memory structures for

classes of ω-regular objectives.
• Work on regular objectives and on deterministic Büchi automata.

Related publications

• Bouyer, Fijalkow, Randour, V. (Accepted to ICALP’23)
“How to Play Optimally for Regular Objectives?”
• Bouyer, Casares, Randour, V. (CONCUR’22) “Half-Positional Objectives

Recognized by Deterministic Büchi Automata”
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Conclusion

Future works
• More expressive game models (e.g., what if both players can make

decisions at the same time?).
• More expressive strategy models (beyond finite-state machines).
• Compute minimal memory structures of all ω-regular objectives.

Thank you
for your attention!
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