Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove^{1,2}

Thesis supervised by Patricia Bouyer² and Mickael Randour¹

¹F.R.S.-FNRS & UMONS – Université de Mons. Belgium ²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

April 26, 2023 – PhD Public Defense

Context

- Thesis started in October 2019.
- Thesis supervised by...

Mickael Randour, Université de Mons

Patricia Bouyer, Laboratoire Méthodes Formelles

• Public thesis defense.

Strategy Complexity of Zero-Sum Games on Graphs

- **1** Motivate the fields of **verification** and **synthesis**.
- 2 Explain the focus of my thesis:
 Strategy Complexity of Zero-Sum Games on Graphs.
- **3** Give some intuition about our **results**.

Reactive systems

• **Reactive systems** = systems that continuously interact with their environment (elevator, web server, *robot vacuum cleaner*...).

- Must achieve an objective
 - using their capabilities (controllable events);
 - while reacting to events from their environment (uncontrollable events).
- Subject to bugs and errors, sometimes serious.
- Solution 1: tests? Efficient, but not exhaustive.
- Solution 2: verification and synthesis.

Verification

- Verification aims for a formal proof that a system achieves its objective, no matter what happens in the environment.
- The **objective** describes the desired behaviors.
- Works with abstractions/models of systems.

• Downside: requires a "complete" system as an input.

Synthesis

- Synthesis seeks to generate a controller achieving the objective.
- Accepts an "incomplete" description of the system.
- Correct controller by construction.
- System and environment are players; the environment is antagonistic.
- \rightsquigarrow Modeling through a zero-sum game.

• Graph (called arena) describing the states of the system.

• Two players:

- \mathcal{P}_1 (the system) controls the \bigcirc s;
- \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

• Graph (called arena) describing the states of the system.

• Two players:

 \mathcal{P}_1

- \mathcal{P}_1 (the system) controls the \bigcirc s;
- \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

- Two players:
 - \mathcal{P}_1 (the system) controls the \bigcirc s;
 - \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

- Two players:
 - \mathcal{P}_1 (the system) controls the \bigcirc s;
 - \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

- Two players:
 - \mathcal{P}_1 (the system) controls the \bigcirc s;
 - \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

- Two players:
 - \mathcal{P}_1 (the system) controls the \bigcirc s;
 - \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

- Two players:
 - \mathcal{P}_1 (the system) controls the \bigcirc s;
 - \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

- Two players:
 - \mathcal{P}_1 (the system) controls the \bigcirc s;
 - \mathcal{P}_2 (the environment) controls the \Box s.
- Interaction of infinite duration between the players.

Example of objective

Game objective: \mathcal{P}_1 should win if and only if the system achieves its objective. We add *events* to the edges.

Objective for (U): reach some (Lazy but a good start!)

- Can \mathcal{P}_1 guarantee this **from** v_1 by making decisions only in \bigcirc s? Yes, for instance by going to v_2 , and then from v_5 to v_6 if necessary.
- Can P₁ guarantee this from v₄ by making decisions only in Os?
 No, because the opponent may stay in v₄.

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box).

- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

$$C = \{ \ \ \ \ \ \ \ \ \}, \\ W = \mathsf{Reach}(\ \ \ \ \) = \{c_1c_2\ldots\in C^\omega \mid \exists i\geq 1, c_i = \ \ \ \ \} \}.$$

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = b
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

$$C = \{ \ \ \ \ \ \ \ \ \}, \\ W = \mathsf{Reach}(\ \ \ \ \) = \{c_1c_2\ldots\in C^\omega \mid \exists i\geq 1, c_i = \ \ \ \ \} \}.$$

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction \rightsquigarrow infinite word w = ba
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

$$C = \{ \ \ \ \ \ \ \ \ \}, \\ W = \mathsf{Reach}(\ \ \ \ \) = \{c_1c_2\ldots\in C^\omega \mid \exists i\geq 1, c_i = \ \ \ \ \} \}.$$

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\Box). Infinite interaction \rightsquigarrow infinite word w = bab
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

$$C = \{ \ \mathcal{D}, \ \mathcal{D} \},$$
$$W = \operatorname{Reach}(\ \mathcal{D}) = \{ c_1 c_2 \ldots \in C^{\omega} \mid \exists i \ge 1, c_i = \ \mathcal{D} \},$$

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = babb
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

$$C = \{ \ \ \ \ \ \ \ \ \}, \\ W = \mathsf{Reach}(\ \ \ \ \) = \{c_1c_2\ldots\in C^\omega \mid \exists i\geq 1, c_i = \ \ \ \ \} \}.$$

Zero-sum turn-based games on graphs

- Colors (events) C, arena $\mathcal{A} = (V_1, V_2, E)$.
- Two players P₁ (○) and P₂ (□).
 Infinite interaction
 → infinite word w = babbc... ∈ C^ω.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Synthesis

Given an arena (with an initial vertex) and an objective, we want to know if \mathcal{P}_1 has a *strategy* **winning** against all strategies of the opponent.

Central object: strategies

In general, a strategy is an object that makes decisions using information about the **past interaction**.

A history is a sequence $v_0 \xrightarrow{c_1} v_1 \xrightarrow{c_2} \dots \xrightarrow{c_n} v_n$ of vertices/edges of \mathcal{A} .

Definition

A **strategy** of \mathcal{P}_1 is a function

 σ : {histories of \mathcal{A} ending in \bigcirc } $\rightarrow E$.

To solve a game, try to exhibit a winning strategy to show that a player wins. But...

- strategies may be hard to describe (set of histories is infinite is);
- there are **infinitely many** strategies (cannot try them all 😟).

Describing strategies

In the example, a winning strategy only looks at the current \bigcirc :

$$\sigma: \{\text{histories of } \mathcal{A} \text{ ending in } \bigcirc\} \{v_1, v_5, v_6\} \to E$$

Easy to describe. Such a strategy is called **memoryless**. **Not a coincidence**!

Memoryless determinacy

For a **reachability** objective, in **all** arenas, when winning is possible for a player, it is always possible to win with a **memoryless strategy**!

Memoryless determinacy

Property

An objective has the property of

memoryless determinacy

if, whenever a player has a **winning strategy**, this player even has a **memoryless winning strategy** (no matter the arena).

This strong property also holds for many other (complex) objectives!

Why is memoryless determinacy nice?

Main advantage: easy **algorithm** to solve the games \rightsquigarrow solves the synthesis problem for memoryless-determined objectives!

Algorithm (for a finite arena A)

- \mathcal{P}_1 and \mathcal{P}_2 have only **finitely many** *memoryless* strategies.
- Enumerate the *memoryless* strategies of \mathcal{P}_1 , and check if **there is one** that wins against **all** *memoryless* strategies of \mathcal{P}_2 .

 \rightsquigarrow Not the most efficient for Reach(m), but not bad for more complex objectives!

But unfortunately, memoryless strategies **do not** always suffice to win 😒.

More complex objective for the vacuum cleaner:

see both 📕 and 靀 infinitely often. (Still a bit simple but good effort!)

Formally, $C = \{ \mathbf{J}, \mathbf{S}, \mathbf{N} \},\$

$$W = \{c_1c_2\ldots \in C^{\omega} \mid \exists^{\infty}i, c_i = \mathbf{J} \land \exists^{\infty}j, c_j = \mathbf{D}\}.$$

In this arena, \mathcal{P}_1 can win from v_1 , but not with a memoryless strategy.

There are 4 **memoryless strategies**, inducing from v_1 :

There are 4 **memoryless strategies**, inducing from v_1 :

There are 4 **memoryless strategies**, inducing from v_1 :

There are 4 **memoryless strategies**, inducing from v_1 :

Objective: see both 🤳 and 靀 infinitely often.

There are 4 **memoryless strategies**, inducing from v_1 :

Finite-memory strategies

- Even if memoryless strategies do not suffice to win, can we condense the information used by winning strategies in a finite way?
- Loss of information (not the full history), but hopefully sufficient!

We store information in finite memory structures.

- Their state is **automatically updated** given the events from game.
- The current **state** gives information to help make decisions.

We define a winning strategy

- This memory structure suffices to win in this arena.
- In all arenas, if winning is possible, finite memory suffices to win!

We define a winning strategy

- This memory structure suffices to win in this arena.
- In all arenas, if winning is possible, finite memory suffices to win!

We define a winning strategy

- This memory structure suffices to win in this arena.
- In all arenas, if winning is possible, finite memory suffices to win!

We define a winning strategy

- This memory structure suffices to win in this arena.
- In all arenas, if winning is possible, finite memory suffices to win!

We define a winning strategy

- This memory structure suffices to win in this arena.
- In all arenas, if winning is possible, finite memory suffices to win!

We define a winning strategy

- This memory structure suffices to win in this arena.
- In all arenas, if winning is possible, finite memory suffices to win!

Finite-memory determinacy

An objective has the property of

finite-memory determinacy

if, whenever a player has a winning strategy, this player also has a **finite-memory** winning strategy.

Why is it nice?

When the memory structure is known, **finite-memory determinacy** also makes the **synthesis problem** solvable!

Classifying **objectives**

Given an **objective**, understand if **simple** strategies suffice to win, or if **complex** strategies are required to win *when possible*.

Memoryless determinacy is well-understood.^{1,2,3,4,5,6}

→ Easy to prove that an objective is memoryless-determined or not.

Finite-memory determinacy is less well-understood.

¹Aminof and Rubin, "First-cycle games", 2017.

²Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

³Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁴Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

⁵Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

⁶Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2023.

Strategy Complexity of Zero-Sum Games on Graphs P. Vandenhove (supervised by P. Bouyer and M. Randour) 20 / 38

Contributions

In the thesis: focus on finite-memory strategies.

Research agenda

- **1** Understand for which **objectives** finite-memory strategies suffice.
- When they suffice, find small sufficient memory structures (i.e., the minimal amount of information to make optimal decisions).

Part I Theoretical results ~->

characterizations, boundaries; as few hypotheses as possible.

Part II

Practical results ~>>

automatically compute small memory structures for concrete classes of objectives.

Part I: General conditions for finite-memory determinacy

One-player games

• A simpler kind of game is a **one-player game**, in which a **single player** controls **all the vertices** (roughly, a graph).

One-player games

- A simpler kind of game is a **one-player game**, in which a **single player** controls **all the vertices** (roughly, a graph).
- Easier to prove memoryless determinacy in one-player games, but seemingly weaker than in two-player games:

Yet...

Nice reduction for memoryless determinacy

... they coincide [GZ05]⁷!

→ **Reduces** a problem about strategy complexity in **two-player** games to a problem in **one-player** games! Very useful.

What about **finite-memory** determinacy?

⁷Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Not as nice 😒

We found an objective W such that:

- finite-memory strategies suffice in all one-player games,
- but infinite memory is required in a two-player game.

For W, the size of the memory depends on the size of the arena...

Restriction of finite-memory determinacy

Let W be an objective.

Reminder: finite-memory determinacy

Objective W is finite-memory determined if

for all arenas \mathcal{A} , there exists a finite memory structure \mathcal{M} such that \mathcal{M} suffices to win in \mathcal{A} .

Arena-independence

Objective W is arena-independent finite-memory determined if

there exists a finite memory structure \mathcal{M} such that for all arenas \mathcal{A} , \mathcal{M} suffices to win in \mathcal{A} .

Stronger property (\mathcal{M} cannot depend on \mathcal{A}).

Arena-independent finite-memory determinacy

Between memoryless and finite-memory determinacy:

Also reducible to the same property, but over one-player games!

Nice property

One-to-two-player arena-independent finite-memory lift

Let ${\it W}$ be an objective and ${\cal M}_1,\,{\cal M}_2$ be memory structures. If

- in **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has winning strategies using \mathcal{M}_1 ,
- in **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has winning strategies using \mathcal{M}_2 ,

then both players have winning strategies using $\mathcal{M}_1\otimes \mathcal{M}_2$ in two-player arenas.

Robust property: holds over the classes of **finite** and **infinite** arenas.

Applicability?

Even if stronger than finite-memory determinacy, still encompasses many objectives. Not the least being...

ω -regular objectives

Important class of objectives

The ω -regular languages are a natural generalization of regular languages to languages of infinite words.

Theorem⁸

The ω -regular objectives are *arena-independent* finite-memory determined.

 \rightsquigarrow Synthesis with such objectives can be done!

⁸Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969; Rabin, "Decidability of Second-Order Theories and Automata on Infinite Trees", 1969; Gurevich and Harrington, "Trees, Automata, and Games", 1982.

$\omega\text{-regular}$ objectives

Using this theorem, ω -regular objectives are somewhere there:

Strategic characterization

Over games played on *infinite arenas*, we have:

Summary of Part I

Contributions

- **Characterizations** of kinds of finite-memory determinacy in various contexts.
- Strengthens the links between memory structures and representations of the objectives.
- Generalizes [GZ05],⁹ [CN06]¹⁰ (about memoryless strategies).

Related publications

- Bouyer, Le Roux, Oualhadj, Randour, V. (CONCUR'20 & LMCS) "Games Where You Can Play Optimally with Arena-Independent Finite Memory"
- Bouyer, Randour, V. (STACS'22 & TheoretiCS) "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs"

⁹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁰Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Part II: How many memory states for precise objectives?

Regular languages (1/2)

Automata are used to define sets of finite words. They accept the finite words that can be read from the initial state \rightarrow to the final state \diamond

This automaton

accepts aab ✔

• accepts baab 🗸

. . .

• rejects aa 🗡

This automaton accepts exactly finite words that see both *a* and *b*.

Regular languages (2/2)

Sets of words that can be defined by an automaton are called regular.

Regular objectives

Assume the objective of \mathcal{P}_1 is to achieve a word from a regular language L (i.e., $W = LC^{\omega}$). What is a **minimal** memory structure that suffices in all arenas?

The whole automaton suffices as a memory structure, but not necessary!

Contributions

- **Characterization** of the memory structures through properties of the language.
- This problem **can be solved** with an algorithm, but **not in an efficient way** (*the related decision problem is NP-complete*).

Implementation

Algorithms that find **minimal memory structures** for regular objectives for both players, starting from an automaton, *using a SAT solver*.

Summary of Part II

Contributions

- Ways to automatically compute the smallest memory structures for classes of ω-regular objectives.
- Work on regular objectives and on *deterministic Büchi automata*.

Related publications

- Bouyer, Fijalkow, Randour, V. (Accepted to ICALP'23) "How to Play Optimally for Regular Objectives?"
- Bouyer, Casares, Randour, V. (CONCUR'22) "Half-Positional Objectives Recognized by Deterministic Büchi Automata"

Conclusion

Future works

- More expressive **game models** (e.g., what if both players can make decisions *at the same time*?).
- More expressive **strategy models** (beyond *finite-state machines*).
- Compute minimal memory structures of all ω -regular objectives.

Thank you for your attention!