Revelations: A Decidable Class of POMDPs with Omega-Regular Objectives

Pierre Vandenhove

Joint work with Marius Belly, Nathanaël Fijalkow, Florian Horn, Hugo Gimbert, Guillermo A. Pérez

LaBRI, Université de Bordeaux

UMONS Formal Methods Reading Group – October 7, 2024

LABORATOIRE

EN INFORMATIQUE

BORDELAIS DE RECHERCHE INFORMATIQUE

université

Outline

Partially observable Markov decision processes (POMDPs):

- stochastic,
- nondeterministic,
- **uncertainty** about the actual state.

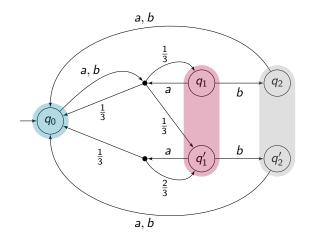
Goal

Strategy synthesis for **parity objectives** ($\rightsquigarrow \omega$ -regular objectives). Undecidable in general; **decidable subclasses**?

Means

Two subclasses with probabilistic guarantees about sometimes **knowing the actual state**; restrictions about **information loss**.

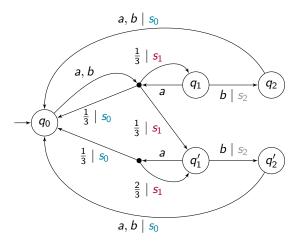
Partially observable MDPs



States Q, **actions** Act, **observations** Obs. Strategies are functions $(Act \times Obs)^* \rightarrow \mathcal{D}(Act)$.

Same model, but signals instead of observations

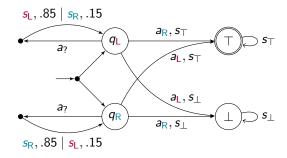
For convenience, "transition-based" signals Sig instead of "state-based" observations.



 \rightsquigarrow Equivalent models (increase linear in |Sig| when going from signals to observations).

Tiger example¹

- Tiger behind one of two doors: the L door or the R door.
- You can *listen* $(a_?)$ or open a door $(a_L \text{ or } a_R)$.



 Probability to reach ⊤ can be arbitrarily close to 1 (the POMDP has value 1), but no almost-sure strategy.

¹Cassandra, Kaelbling, and Littman, "Acting Optimally in Partially Observable Stochastic Domains", 1994.

Objective

- Function $p: Q \rightarrow \{0, \dots, d\}$ assigning **priorities** to **states**.
- Parity objective: the maximal priority seen infinitely often is even.
- Common subclasses:
 - **Büchi**: $p: Q \rightarrow \{1,2\}$: something good (2) occurs infinitely often,
 - ▶ coBüchi: $p: Q \rightarrow \{0, 1\}$: something bad (1) occurs finitely often.
- Almost-sure strategies; "qualitative".

Theorem^{2,3}

- Almost-sure reachability, safety, and Büchi are EXPTIME-complete.
- Almost-sure **coBüchi** (and therefore **parity**) are **undecidable**.

Undecidability already for **probabilistic automata** (|Sig| = 1). Quantitative problems (e.g., value-1 problem) are undecidable for reachability objectives.⁴

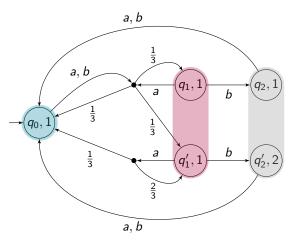
²Baier, Größer, and Bertrand, "Probabilistic ω -automata", 2012.

 $^{^{3}}$ Chatterjee, Chmelik, and Tracol, "What is decidable about partially observable Markov decision processes with ω -regular objectives", 2016.

⁴Gimbert and Oualhadj, "Probabilistic Automata on Finite Words: Decidable and Undecidable Problems", 2010.

Example

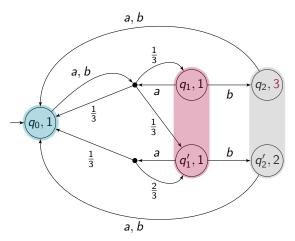
Added priorities 1, 2 to the previous POMDP.



Almost-sure strategy? Yes! Move to q_2/q_2' infinitely often.

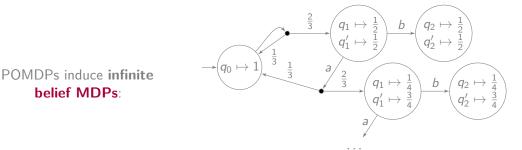
Example

Added priorities 1, 2, 3 to the previous POMDP. Changed the priority of q_2 to 3.

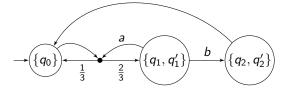


Almost-sure strategy? Yes! Move to q_2/q'_2 when *increasingly high probability* to be in q'_1 .

Belief (support) MDP



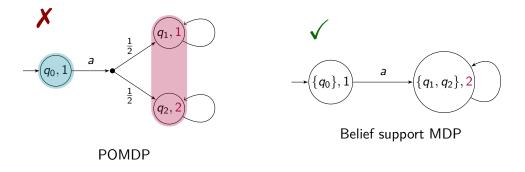
Finite: only keep belief supports:



When does the analysis of the belief support MDP suffice?

Non-soundness of the belief support MDP

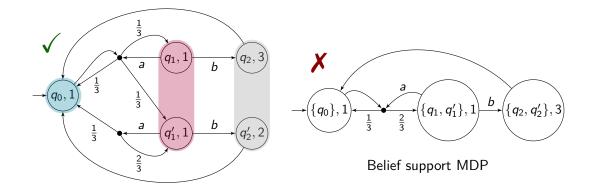
No almost-sure strategy in the POMDP, but OK in the belief support MDP.



(Technical detail: how to lift the priority function? Take the max.)

Incompleteness of the belief support MDP

Almost-sure strategy in the POMDP, **not** in the belief support MDP.



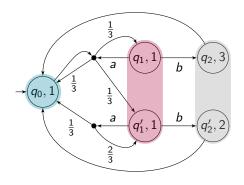
POMDP

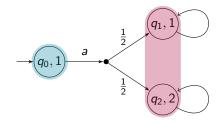
First revealing property

First revealing property

Property 1

A POMDP is **weakly revealing** if for all strategies, almost surely, the **current state is known** infinitely often.





Not weakly revealing

Weakly revealing

First revealing property

Property 1

A POMDP is **weakly revealing** if for all strategies, almost surely, the **current state is known** infinitely often.

When a revealing history happens, as much information in the finite belief **support** MDP as in the infinite belief MDP.

$$\{q_0\}$$
 \approx $q_0 \mapsto 1$

Includes POMDPs that *reset* to the initial state with probability 1.

Weakly revealing POMDPs

"Weakly revealing" is a semantic property:

Deciding the property

Deciding whether a POMDP is **weakly revealing** is EXPTIME-hard and in 2-EXPTIME (**update**: actually EXPTIME-complete, WIP).

Let \mathcal{P} be a weakly revealing POMDP with a parity objective.

Soundness for parity

Almost-sure winning strategy in the **belief support MDP** of $\mathcal{P} \Longrightarrow$ also in **POMDP** \mathcal{P} .

Proof: similar ideas to *decisiveness* (the "singletons" belief supports are a finite attractor).

Completeness for priorities $\{0, 1, 2\}$

Almost-sure winning strategy in **POMDP** $\mathcal{P} \Longrightarrow$ also in the **belief support MDP** of \mathcal{P} .

Analysing the belief support MDP is **sound** and **complete** for parity $\{0, 1, 2\}$.

Decidability of weakly revealing POMDPs

Decidability

Almost-sure **parity** $\{0, 1, 2\}$ for **weakly revealing** POMDPs is EXPTIME-complete.

Algorithm: solve the **belief support MDP** \rightsquigarrow in EXPTIME. **EXPTIME-hardness**: already for coBüchi; reduction from almost-sure safety in POMDPs.

Compared to general POMDPs:

→ makes coBüchi decidable,

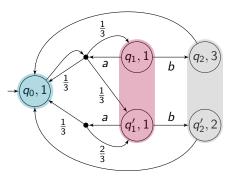
 \rightsquigarrow gives a (conceptually) simpler algorithm for Büchi (state space is 2^{*Q*}, instead of $Q \times 2^{Q}$ in general⁵).

Exponential strategies $(2^Q \rightarrow Act)$ suffice; this bound is tight.

⁵Baier, Größer, and Bertrand, "Probabilistic ω -automata", 2012.

Parity still not decidable

Belief support MDP is "incomplete" for this weakly revealing POMDP with priorities 1, 2, 3:



Undecidability

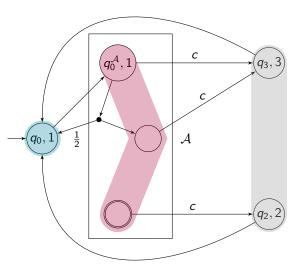
Almost-sure parity $\{1, 2, 3\}$ is undecidable for weakly revealing POMDPs.

Reduction from the value-1 problem for probabilistic automata.⁶

⁶Gimbert and Oualhadj, "Probabilistic Automata on Finite Words: Decidable and Undecidable Problems", 2010.

Proof sketch

- We take a prob. automaton $\mathcal{A} = (Q^{\mathcal{A}}, \operatorname{Act}^{\mathcal{A}}, \delta^{\mathcal{A}}, q_0^{\mathcal{A}})$ with an accepting set F.
- We replace $\{q_1, q_1'\}$ by a copy of \mathcal{A} .
- We add a non-zero probability to go back to the initial state from every transition (→ weakly revealing).
- We add a new action *c* that reaches *q*₂ if and only if we are in an accepting state of *A*.
- A has value 1 ↔ there is an almost-sure strategy in the parity-{1,2,3} POMDP.



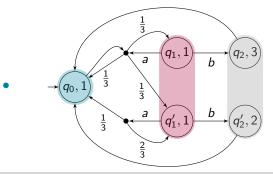
Second revealing property

Second revealing property

Property 2

A POMDP is strongly revealing if for every transition $q \xrightarrow{a} q'$, there is a non-zero probability to see a signal that uniquely identifies q'.

- Syntactic property.
- Strongly revealing ⇒ weakly revealing.



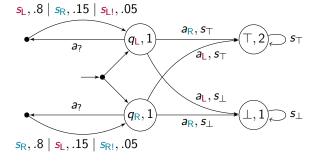
Not strongly revealing: $q_1 \xrightarrow{a} q'_1$ is a possible transition, but nothing can reveal q'_1 with certainty.

Second revealing property

Property 2

A POMDP is strongly revealing if for every transition $q \xrightarrow{a} q'$, there is a non-zero probability to see a signal that uniquely identifies q'.

- Syntactic property.
- Strongly revealing ⇒ weakly revealing.
- **Strongly revealing** variant of the Tiger example ("revealing signals" *s*_{L1} and *s*_{R1}):



Strongly revealing: results

Completeness for **parity**

Almost-sure winning strategy in **strongly revealing POMDP** $\mathcal{P} \Longrightarrow$ also in the **belief support MDP** of \mathcal{P} .

Soundness for full parity follows already from weakly revealing POMDPs.

Theorem

Almost-sure parity for strongly revealing POMDPs is EXPTIME-complete.

Already EXPTIME-hard for coBüchi.

Another way to see the strongly revealing property:

Optimistic semantic

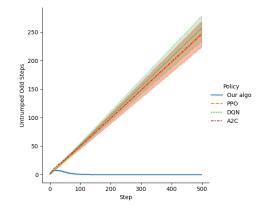
From a POMDP \mathcal{P} , one can define a related **strongly revealing** POMDP \mathcal{P}_{opt} by adding a small probability of a revelation along all transitions.

Proposition

If there is no almost-sure strategy in \mathcal{P}_{opt} , then this is also the case in \mathcal{P} .

Empirical evaluation

- Classical algorithms (PPO, DQN, A2C)⁷ for reinforcement learning in POMDPs do not solve the revealing tiger well.
- Not a completely fair comparison (e.g., model-based vs. model-free, parity vs. rewards), but indicates that more structural observations could be useful.



 $^{^{7}\}mathsf{Raffin}$ et al., "Stable-Baselines3: Reliable Reinforcement Learning Implementations", 2021.

The strongly revealing property seems very strong, but decidability frontier when we move to games:

Theorem

Almost-sure **coBüchi** for **strongly revealing games with partial information** is undecidable.

More complex reduction from the value-1 problem for probabilistic automata.

Summary for POMDPs

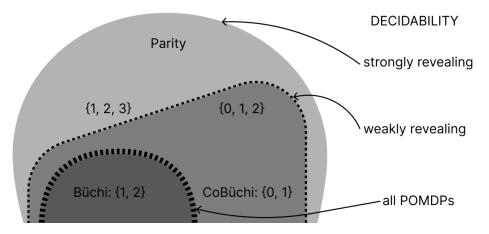


Figure: Decidable subclasses of the *parity* objective depending on the revelation mechanism.

Related works

Same philosophy: models with sure revelations (not just almost sure).⁸
~> even games are decidable!

To appreciate the difference, very different bounds on the frequency of revelations:

 $\begin{array}{ll} \mbox{Weakly revealing:} & \mbox{Sure revelations:} \\ \mbox{for all } \sigma \in \Sigma(\mathcal{P}), & \mbox{for all } \sigma \in \Sigma(\mathcal{P}), \\ \mathbb{P}^{\mathcal{P}}_{\sigma} \Big[\mbox{Reach}^{\leq 2^{|\mathcal{Q}|} - 1}(\mbox{Revelations}) \Big] \geq \beta_{\mathcal{P}}^{2^{|\mathcal{Q}|} - 1}. & \mathbb{P}^{\mathcal{P}}_{\sigma} \Big[\mbox{Reach}^{\leq |\mathcal{Q}|}(\mbox{Revelations}) \Big] = 1. \end{array}$

- We study strategies $2^Q \rightarrow Act$ and give sufficient conditions for their sufficiency. Similar studies exist for (less general) "memoryless" strategies Obs $\rightarrow Act$.⁹
- Active-measuring POMDPs: a cost may be paid to acquire additional information about the next state.¹⁰
- *Multi-environment MDPs*: multiple MDPs on the same state space with different transition functions.¹¹

¹¹Raskin and Sankur, "Multiple-Environment Markov Decision Processes", 2014.

⁸Berwanger and Mathew, "Infinite games with finite knowledge gaps", 2017.

⁹Vlassis, Littman, and Barber, "On the Computational Complexity of Stochastic Controller Optimization in POMDPs", 2012.

¹⁰Bellinger et al., "Active Measure Reinforcement Learning for Observation Cost Minimization", 2021; Krale, Simão, and Jansen, "Act-Then-Measure: Reinforcement Learning for Partially Observable Environments with Active Measuring", 2023.

Future works

Open problems:

- Larger class where the **belief support MDP** is sound and complete?
- Larger **decidable classes** for coBüchi/parity?
- More general models that the revealing mechanisms make decidable?

Thanks!