Memory Requirements of Omega-Regular Objectives: the Regular Case

Pierre Vandenhove^{1,2}

Joint work with Patricia Bouyer², Nathanaël Fijalkow³, Mickael Randour¹

¹F.R.S.-FNRS & UMONS – Université de Mons, Belgium
²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
³LaBRI, Université de Bordeaux, France

December 16, 2022 – UMONS FM Reading Group

Outline

Synthesis problem

Synthesizing controllers for reactive systems with an objective. Systems and their environment modeled with zero-sum games.

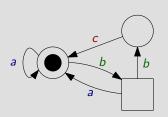
Strategy complexity

Given an objective, what are the **smallest** optimal controllers? → What is the *smallest automatic structure* that remembers **sufficient information** to make **optimal decisions**?

Results

Characterization of automatic structures for *regular objectives*; **computational complexity** of finding small structures.

Zero-sum turn-based games on graphs

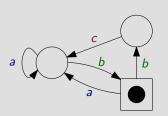


- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square)

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

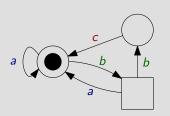


- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = b

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

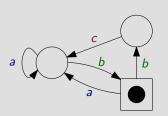


- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = ba

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

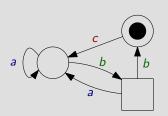


- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = bab

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

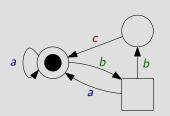


- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word w = babb

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs

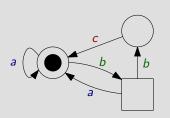


- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word $w = babbc \dots \in C^{\omega}$.

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

Zero-sum turn-based games on graphs



- $C = \{a, b, c\}, A = (V_1, V_2, E).$
- Two players \mathcal{P}_1 (\bigcirc) and \mathcal{P}_2 (\square) generate an infinite word $w = babbc \dots \in C^{\omega}$.
- **Objective** of \mathcal{P}_1 is a set $W \subseteq C^{\omega}$.
- **Zero-sum**: objective of \mathcal{P}_2 is $C^{\omega} \setminus W$.

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

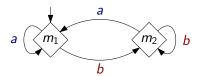
Representations of a strategy

In general, a strategy $\sigma\colon E^*\to E$ has an **infinite** representation. For synthesis, we like when winning strategies admit a **finite** representation with a **computable** size. Usual finite representation:

Memory structure

Memory structure $(M, m_{\text{init}}, \alpha_{\text{upd}})$: finite set of states M, initial state m_{init} , update function $\alpha_{\text{upd}} \colon M \times C \to M$.

Ex.: remember whether a or b was last played (not yet a strategy!):

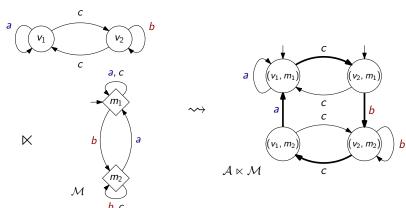


Given an arena $A = (V_1, V_2, E)$: next-action function α_{nxt} : $V_i \times M \rightarrow E$.

Finite memory pprox no memory in the product

Memory \mathcal{M} in $\mathcal{A} \approx$ no memory in arena $\mathcal{A} \ltimes \mathcal{M}$.

If $C = \{a, b, c\}$, $W = \{w \in C^{\omega} \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\}$:



ω -regular objectives

The ω -regular objectives are the ones that can be expressed with ω -regular expressions, or equivalently, the ones that can be expressed by deterministic Muller automata.

Examples with $C = \{a, b\}$:

- $W = b^*ab^*aC^{\omega}$;
- $W = (b^*a)^{\omega}$;
- $W = ((ab) | (ba))C^{\omega}$.

Theorem (Büchi, Landweber, 1969)¹

All ω -regular objectives admit finite-memory winning strategies in all arenas.

Memory Requirements: the Regular Case

¹Büchi and Landweber, "Definability in the Monadic Second-Order Theory of Successor", 1969.

Well-studied case: Muller conditions

For $\mathcal{F} \subseteq 2^{\mathcal{C}}$, objective Muller(\mathcal{F}) is the set of words whose set of colors seen infinitely often is in \mathcal{F} .

Examples with $C = \{a, b\}$:

- Muller($\{\{a\}, \{a, b\}\}\) = (b^*a)^{\omega}$,
- Muller($\{\{a,b\}\}\) = (b^*a)^{\omega} \cap (a^*b)^{\omega}$.

Memory requirements of Muller conditions

- First upper bound of size $\mathcal{O}(|C|!)$ in 1982 (later appearance record);²
- Followed by many works about specific cases;^{3,4}
- Characterization of precise memory requirements and algorithm to compute them in 1997 ([DJW97]⁵).

Memory Requirements: the Regular Case

Pierre Vandenhove

²Gurevich and Harrington, "Trees, Automata, and Games", 1982.

³Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

 $^{^4}$ Klarlund, "Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata", 1994.

Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Is that it?

We have:

- Ithat all ω -regular objectives can be represented by a **deterministic** automaton using a Muller acceptance condition;
- 2 a complete understanding of the memory requirements of Muller conditions.

Does this settle the question of the memory requirements of all ω -regular objectives?

Sometimes quoted as such,⁶ but **not the case** (it is only an upper bound)!

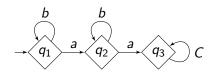
Memory Requirements: the Regular Case

 $^{^6}$ In Handbook of Model Checking (Bloem, Chatterjee, and Jobstmann, "Graph Games and Reactive Synthesis", 2018): "The results of Dziembowski et al. [80] give precise memory requirements for strategies in 2-player games with ω-regular objectives".

Why only an upper bound?

Let $C = \{a, b\}$, $W = b^*ab^*aC^{\omega}$ (\approx seeing a two or more times). Express it as a **Muller condition**?

Not directly a Muller condition Muller(\mathcal{F}) with $\mathcal{F} \subseteq 2^C$ \rightsquigarrow needs an **automaton structure**.



$$\rightsquigarrow W = \text{Muller}(\{F \subseteq \{q_1, q_2, q_3\} \mid q_3 \in F\}).$$

Using [DJW97], we need 1 memory state...

... after augmenting the game graph with the automaton, so upper bound of 3 states of memory.

But 1 memory state suffices for winning strategies!

Memory Requirements: the Regular Case

⁷Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

Orthogonal quest: regular objectives

How to go further?

Study the memory requirements of ω -regular objectives with **non-trivial** automaton structures.

We consider "the simplest ones".

Regular objectives

- A regular reachability objective is a set LC^{ω} with $L \subseteq C^*$ regular.
- A regular safety objective is a set $C^{\omega} \setminus LC^{\omega}$.
- A player wants to realize a word in L, the other wants to prevent it.
- Expressible as standard deterministic finite automata.
- Special cases of open and closed sets, at the first level of the Borel hierarchy.

Comparing words

Let $W \subseteq C^{\omega}$ be an objective.

Winning continuations

For
$$x \in C^*$$
, $x^{-1}W = \{ w \in C^{\omega} \mid xw \in W \}$.

For $x, y \in C^*$,

- $x \sim_W y$ if $x^{-1}W = y^{-1}W$ (\approx Myhill-Nerode equivalence relation),
- $x \leq_W y$ if $x^{-1}W \subseteq y^{-1}W$ (called **prefix preorder**).

Blackboard example for a regular safety objective.

Necessary condition for the memory

Let W be an objective.

Lemma

The memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ needs to **distinguish incomparable words** (for \leq_W), i.e.,

if
$$x, y \in C^*$$
 are incomparable for \leq_W , then $\alpha^*_{\sf upd}(m_{\sf init}, x) \neq \alpha^*_{\sf upd}(m_{\sf init}, y)$.

Why?

Blackboard example.

In other words, the memory structure needs to be able to know a chain for \leq_W in which we are, but it is OK not to remember the precise automaton state.

Characterization: safety

Let W be a **regular safety objective**.

Theorem

A memory structure suffices to win in all arenas for W if and only if it distinguishes incomparable words.

Question

How to find the smallest such memory structure?

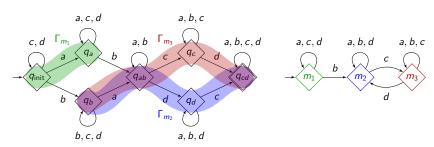
A more involved example

Blackboard example.

Two constructions that always work for upper bounds:

- 1 just take the whole automaton as a memory structure;
- 2 build a memory state for each maximal chain.

Possible to do better? Yes!



Reformulation using chain coverings

Let W be the regular safety objective derived from automaton $\mathcal{D} = (Q, C, q_{\mathsf{init}}, \delta, F)$.

Lemma

There is a memory structure \mathcal{M} with k states that suffices for W if and only if there are k sets $\Gamma_1, \ldots, \Gamma_k \subseteq Q$ such that

- 2 for all $i \in \{1, ..., k\}$, Γ_i is a chain for \leq_W , and
- 3 for all $i \in \{1, ..., k\}$, for all $c \in C$, there is $j \in \{1, ..., k\}$ such that $\delta(\Gamma_i, c) \subseteq \Gamma_j$.

Computational complexity: safety

Decision problem

MEMORYSAFE

Input: An automaton \mathcal{D} inducing the regular safety objective W and an integer $k \in \mathbb{N}$.

Question: Does there exist a memory structure \mathcal{M} with at most k states which suffices to play optimally for W?

Thanks to the reformulation, we get that $\operatorname{MEMORYSAFE}$ is in NP. We also showed NP-hardness thanks to a reduction from $\operatorname{HAMILTONIANCYCLE}$.

Theorem

MEMORYSAFE is NP-complete.

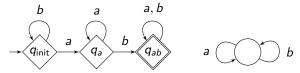
Regular reachability

Let W be a regular **reachability** objective.

Memory structures still need to distinguish incomparable words.

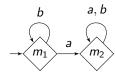
But not sufficient!

 $W = b^*aa^*bC^{\omega}$:



Main idea: seeing a is necessary and makes progress. However, we cannot just play a to win. Word a is an insufficient progress.

This memory structure distinguishes this insufficient progress.



Condition necessary for reachability

Let $W \subseteq C^{\omega}$ be an objective.

Necessary property

Let $\mathcal{M}=(M,m_{\mathsf{init}},\alpha_{\mathsf{upd}})$ be a memory structure. Memory structure \mathcal{M} distinguishes insufficient progress if for all $w_1 \in \mathcal{C}^*$ with $m=\alpha_{\mathsf{upd}}^*(m_{\mathsf{init}},w_1)$, for all $w_2 \in \mathcal{C}^*$, if $w_1(w_2)^\omega \notin W$ and $w_1 \prec w_1w_2$, then $\alpha_{\mathsf{upd}}^*(m,w_2) \neq m$.

Necessary for \mathcal{M} to be optimal. Why?

Blackboard proof.

Characterization: reachability

Let W be a regular reachability objective.

Theorem

Memory structure $\mathcal M$ suffices to win in all arenas if and only if $\mathcal M$ distinguishes incomparable words and $\mathcal M$ distinguishes insufficient progress.

Remark

 ${\it Distinguishing\ insufficient\ progress}$ is necessary for all objectives, even for regular safety ones. . .

... but there is *no insufficient progress* for regular safety objectives!

Computational complexity: reachability

Decision problem

MEMORYREACH

Input: An automaton \mathcal{D} inducing the regular reachability objective W and an integer $k \in \mathbb{N}$.

Question: Does there exist a memory structure \mathcal{M} with at most k states which suffices to play optimally for W?

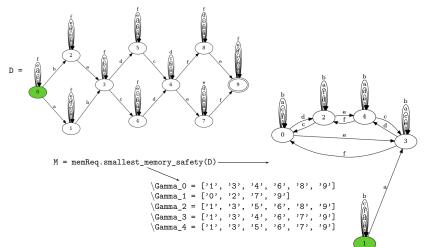
Theorem

MEMORYREACH is NP-complete.

Needed to show that " \mathcal{M} distinguishes insufficient progress" is in NP, but the same hardness proof as for $\operatorname{MEMORYSAFE}$.

Implementation

We have implemented algorithms that automatically find minimal memory structures for regular objectives. **Simple ideas**: binary search on the minimal size, encoding properties as SAT instances and use of a SAT solver.



Conclusion

Summary

- Characterization of the memory structures for regular objectives.
- NP-completeness of finding small memory structures.
- Implementation using a SAT solver.

Future work

- Two orthogonal directions are understood: Muller conditions⁸ and regular objectives.⁹
 - \leadsto What about objectives recognized by deterministic Muller automata, i.e., ω -regular objectives?
- Partial recent results for objectives recognized by deterministic Büchi automata and memoryless strategies.¹⁰

⁸Dziembowski, Jurdziński, and Walukiewicz, "How Much Memory is Needed to Win Infinite Games?", 1997.

⁹Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2022.

 $^{^{10}}$ Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2022.