Characterizing ω -regular languages through strategy complexity of games on infinite graphs [Ongoing work]

 $\label{eq:pierre} \begin{array}{l} \mbox{Pierre Vandenhove}^{1,2} \\ \mbox{Joint work with Patricia Bouyer}^2 \mbox{ and Mickael Randour}^1 \end{array}$

¹F.R.S.-FNRS & UMONS – Université de Mons, Belgium ²Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

September 23, 2021 – UMONS Reading Group

Outline

Strategy synthesis for zero-sum turn-based games on graphs

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

"Optimal" w.r.t. an objective or a specification.

Interest in "simple" controllers

Finite-memory determinacy: when do finite-memory strategies suffice?

Inspiration

Results about memoryless determinacy.^{1,2}

 $^{^1}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

²Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Zero-sum turn-based games on graphs

- Two-player arenas: S_1 (\bigcirc , for \mathcal{P}_1) and S_2 (\Box , for \mathcal{P}_2), edges E.
- Set *C* of **colors**. Edges are colored.
- **Objectives** given by a set $W \subseteq C^{\omega}$. **Zero-sum**.
- A strategy for \mathcal{P}_i is a (partial) function $\sigma \colon E^* \to E$.

First: finite arenas.

Memoryless determinacy

Question

Given an objective, do "simple" strategies suffice to play optimally in all arenas?

A strategy σ of \mathcal{P}_i is *memoryless* if it is a function $\not E S_i \to E$.

E.g., for reachability, **memoryless** strategies suffice to play optimally. Also suffice for safety, Büchi, co-Büchi, parity, mean payoff, energy...

Memoryless determinacy

Memoryless determinacy

An objective $W \subseteq C^{\omega}$ is **memoryless-determined** if memoryless strategies suffice to play optimally for both players in all (finite) arenas.

We require *uniformity*: a **single** memoryless strategy must be winning from all the states where that is possible.

Memoryless determinacy

Good understanding of memoryless determinacy:

- sufficient conditions to guarantee memoryless optimal strategies for both players.^{3,4}
- sufficient conditions to guarantee memoryless optimal strategies for one player.^{5,6,7,8}
- characterization of the objectives admitting optimal memoryless strategies for both players.⁹

³Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

⁴Aminof and Rubin, "First-cycle games", 2017.

⁵Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

⁶Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

⁷Bianco et al., "Exploring the boundary of half-positionality", 2011.

⁸Gimbert and Kelmendi, "Submixing and Shift-Invariant Stochastic Games", 2014.

⁹Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Gimbert and Zielonka's characterization

One-to-two-player memoryless lift (finite arenas)¹⁰

Let $W \subseteq C^{\omega}$ be an objective. If

- in all **one-player** arenas of \mathcal{P}_1 , \mathcal{P}_1 has an optimal memoryless strategy,
- in all **one-player** arenas of \mathcal{P}_2 , \mathcal{P}_2 has an optimal memoryless strategy,

then both players have an optimal memoryless strategy in all **two-player** arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., parity and **mean-payoff** games.

¹⁰Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Application: memoryless determinacy of mean payoff¹²

- Colors C = Q. Objective W ⊆ C^ω (for P₁): obtain a mean payoff (average weight by transition) ≥ 0.
- In one-player arenas, simply reach and loop around the simple cycle with the greatest (for P₁) or smallest (for P₂) mean payoff
 → memoryless strategy.
 Memoryless strategies can be uniformized as W is prefix-independent.¹¹

[GZ05] Memoryless strategies also suffice to play optimally in **two-player** arenas!

 $^{^{11}\}mathrm{Colcombet}$ and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

¹²Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

What about **infinite arenas**?

Motivations

- Links between the strategy complexity in finite and infinite arenas?
- Can we get a similar one-to-two-player lift for infinite arenas?

 → proof technique for finite arenas (induction on number of edges) is
 not suited to infinite arenas.

Greater memory requirements in infinite arenas

Objective W: get a mean payoff ≥ 0 .

- Memoryless strategies suffice in finite arenas.
- Infinite memory is required in (even one-player) deterministic infinite arenas.¹³

→ Possible to get 0 at the limit with infinite memory: loop $|e^{e^n}|$ many times in state s_n for all n.

¹³Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

Infinite arenas, memoryless strategies

Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of **memoryless** determinacy (infinite arenas)¹⁴

If **memoryless strategies** suffice to play optimally for both players in **infinite arenas**, then W is a **parity condition**.

Parity condition: there exists $p: C \rightarrow \{0, \ldots, n\}$ such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

Characterization since parity objectives are memoryless-determined (in arenas of any cardinality).¹⁵

¹⁴Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

¹⁵Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

First insight

Possible to obtain the result with a hypothesis on **one-player** arenas only! Let $W \subseteq C^{\omega}$ be a **prefix-independent** objective.

Characterization of memoryless determinacy (infinite arenas)

If **memoryless strategies** suffice to play optimally for both players in **one-player infinite arenas**, then W is a **parity condition**.

Proof of **one-to-two-player lift**:

Two "limits" of the result

- There are simple memoryless-determined objectives (in infinite arenas) which are not prefix-independent (e.g., reachability).
 A bit disappointing to miss memoryless-determined objectives.
- What about strategies with finite memory?

 more and more prevalent in the literature.

Finite memory

Finite-memory strategy \approx memory structure + next-action function.

Memory structure

Memory structure $(M, m_{init}, \alpha_{upd})$: finite set of states M, initial state m_{init} , update function α_{upd} : $M \times C \rightarrow M$.

Ex. to remember whether a or b was last played (not yet a strategy!):

Given an arena $\mathcal{A} = (S, S_1, S_2, E)$: *next-action function* α_{nxt} : $S_i \times M \to E$. Memoryless strategies are based on the **"trivial" memory structure**.

Finite-memory determinacy

Finite-memory determinacy

An objective W is **finite-memory-determined** if **there exists** a **finite memory structure** \mathcal{M} such that strategies based on memory \mathcal{M} suffice to play optimally for both players **for all arenas** \mathcal{A} .

Remark

Usually, the definition inverts the order of the quantifiers. The order has a big impact in **finite arenas**, ¹⁶ but not in **infinite arenas**.

¹⁶Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to one-player memory determinacy?

$Arenas \backslash Str. \ comp.$	Memoryless	FM " $\exists \mathcal{M} \forall \mathcal{A}$ "	Mildly growing
Finite deterministic	[GZ05] ¹⁷	[BLORV20] ¹⁸	[Koz21] ¹⁹
Finite stochastic	[GZ09] ²⁰	[BORV21] ²¹	
Infinite determin.	P-Ind: [CN06] ²²	New work	

Strategic characterization of $\omega\text{-regular}$ languages

Pierre Vandenhove

¹⁷Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

¹⁸Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

¹⁹Kozachinskiy, "One-to-Two-Player Lifting for Mildly Growing Memory", 2021.

²⁰Gimbert and Zielonka, "Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences", 2009.

²¹Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2021.

²²Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Tool to get rid of prefix-independence: right congruence

Let L be a language of **finite** words on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_L y$ if for all $z \in C^*$, $xz \in L \Leftrightarrow yz \in L$.

Myhill-Nerode theorem²³

L is **regular** if and only if \sim_L has **finite index**.

The equivalence classes of \sim_L correspond to the states of the minimal DFA for *L*.

²³Nerode, "Linear Automaton Transformations", 1958.

Tool to get rid of prefix-independence: right congruence

Let W be a language of **infinite** words (= an objective) on alphabet C.

Right congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^{\omega}$, $xz \in W \Leftrightarrow yz \in W$.

Links with ω -regularity?

- If W is ω-regular, then ~_W has finite index.
 In this case, there is still a DFA M_∼ associated with ~_W.
- The reciprocal is not true.

Examples:

•
$$\mathcal{C} = \mathbb{Q}$$
, $\mathcal{W} = \mathsf{MP}^{\geq 0}$: $\sim_{\mathsf{MP}^{\geq 0}}$ has index 1 but not ω -regular;

•
$$C = \{a, b\}$$
, $W = C^*(ab)^{\omega}$ is ω -regular but \mathcal{M}_{\sim} is not "useful";

• $C = \{a, b\}, W = C^* a C^* a C^{\omega}$: ω -regular and \mathcal{M}_{\sim} is "useful".

Memory requirements in infinite arenas

- C = Q, W = MP^{≥0}: ~_{MP^{≥0}} has index 1 but not ω-regular: infinite memory;
- C = {a, b}, W = C^{*}(ab)^ω is ω-regular but M_∼ is not "useful": the minimal memory (blackboard) is useful;
- C = {a, b}, W = C^{*}aC^{*}aC^ω: ω-regular and M_∼ is "useful": memoryless-determined.

Insight for prefix-independence

Let W be an objective.

Replacement for prefix-independence

If a finite memory structure suffices to play optimally in **one-player** infinite arenas for both players, then \sim_W has finite index (so \mathcal{M}_{\sim} is finite).

Intuition: even without assuming prefix-independence (index of \sim_W is 1), we have a strong property on prefixes for free (index of \sim_W is finite).

Main result

Let W be an objective.

Theorem

If a finite memory structure \mathcal{M} suffices to play optimally in **one-player** infinite arenas for both players, then W is recognized by a **parity automaton** $(\mathcal{M}_{\sim} \otimes \mathcal{M}, p)$.

$$\rightsquigarrow$$
 if $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}}),$
 $p \colon M \times C \to \{0, \dots, n\}.$

Generalizes [CN06]²⁴ ($\mathcal{M}_{\sim} = \mathcal{M} = \mathcal{M}_{triv}$).

²⁴Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

Corollaries

Let $W \subseteq C^{\omega}$ be an objective.

One-to-two-player FM lift (infinite arenas)

If W is finite-memory-determined in **one-player** infinite arenas, then W is finite-memory-determined in **two-player** infinite arenas.

Characterization

W is **finite-memory-determined** if and only if *W* is ω -regular.

Proof: W is finite-memory-determined in **one-player** arenas

- \implies W is recognized by a deterministic parity automaton (ω -regular).
- \implies this parity automaton (as a memory) suffices in **two-player** arenas.²⁵
- \implies this parity automaton (as a memory) suffices in **one-player** arenas.

²⁵Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

Summary

Contributions

- New **one-to-two-player lift** for zero-sum games on infinite graphs.
- Strategic characterization of ω-regular languages.

Future work

- Other classes of arenas (e.g., finitely branching).
- Stochastic infinite arenas?

Thanks! Questions?