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Outline

Strategy synthesis for zero-sum turn-based games on graphs
Design optimal controllers for systems interacting with an antagonistic
environment.

“Optimal” w.r.t. an objective or a specification.

Interest in “simple” controllers
Finite-memory determinacy: when do finite-memory strategies suffice?

Inspiration
Results about memoryless determinacy.1, 2

1Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
2Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Zero-sum turn-based games on graphs
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• Two-player arenas: S1 (©, for P1) and S2 (�, for P2), edges E .
• Set C of colors. Edges are colored.
• Objectives given by a set W ⊆ Cω. Zero-sum.
• A strategy for Pi is a (partial) function σ : E ∗ → E .

First: finite arenas.
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Memoryless determinacy

Question
Given an objective, do “simple” strategies suffice to play optimally in all
arenas?

A strategy σ of Pi is memoryless if it is a function��ZZE ∗ Si → E .
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E.g., for reachability, memoryless strategies suffice to play optimally.
Also suffice for safety, Büchi, co-Büchi, parity, mean payoff, energy. . .
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Memoryless determinacy

Memoryless determinacy
An objective W ⊆ Cω is memoryless-determined if memoryless strategies
suffice to play optimally for both players in all (finite) arenas.

We require uniformity: a single memoryless strategy must be winning from
all the states where that is possible.
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Memoryless determinacy

Good understanding of memoryless determinacy:

• sufficient conditions to guarantee memoryless optimal strategies for
both players.3, 4

• sufficient conditions to guarantee memoryless optimal strategies for
one player.5, 6, 7, 8

• characterization of the objectives admitting optimal memoryless
strategies for both players.9

3Gimbert and Zielonka, “When Can You Play Positionally?”, 2004.
4Aminof and Rubin, “First-cycle games”, 2017.
5Kopczyński, “Half-Positional Determinacy of Infinite Games”, 2006.
6Gimbert, “Pure Stationary Optimal Strategies in Markov Decision Processes”, 2007.
7Bianco et al., “Exploring the boundary of half-positionality”, 2011.
8Gimbert and Kelmendi, “Submixing and Shift-Invariant Stochastic Games”, 2014.
9Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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Gimbert and Zielonka’s characterization

One-to-two-player memoryless lift (finite arenas)10

Let W ⊆ Cω be an objective. If
• in all one-player arenas of P1, P1 has an optimal memoryless strategy,
• in all one-player arenas of P2, P2 has an optimal memoryless strategy,

then both players have an optimal memoryless strategy in all two-player
arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy
of, e.g., parity and mean-payoff games.

10Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
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Application: memoryless determinacy of mean payoff 12

• Colors C = Q. Objective W ⊆ Cω (for P1):
obtain a mean payoff (average weight by transition) ≥ 0.

• In one-player arenas, simply reach and loop around the simple cycle
with the greatest (for P1) or smallest (for P2) mean payoff
 memoryless strategy.
Memoryless strategies can be uniformized as W is prefix-independent.11

[GZ05]====⇒ Memoryless strategies also suffice to play optimally
in two-player arenas!

11Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
12Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
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What about infinite arenas?

Motivations
• Links between the strategy complexity in finite and infinite arenas?
• Can we get a similar one-to-two-player lift for infinite arenas?
 proof technique for finite arenas (induction on number of edges) is
not suited to infinite arenas.
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Greater memory requirements in infinite arenas

Objective W : get a mean payoff ≥ 0.
• Memoryless strategies suffice in finite arenas.
• Infinite memory is required in (even one-player) deterministic infinite
arenas.13
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times in state sn for all n.

13Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.
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Infinite arenas, memoryless strategies

Let W ⊆ Cω be a prefix-independent objective.

Characterization of memoryless determinacy (infinite arenas)14

If memoryless strategies suffice to play optimally for both players in
infinite arenas, then W is a parity condition.

Parity condition: there exists p : C → {0, . . . , n} such that

w = c1c2 . . . ∈W ⇐⇒ lim sup
i

p(ci) is even.

Characterization since parity objectives are memoryless-determined (in
arenas of any cardinality).15

14Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
15Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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First insight

Possible to obtain the result with a hypothesis on one-player arenas only!
Let W ⊆ Cω be a prefix-independent objective.

Characterization of memoryless determinacy (infinite arenas)
If memoryless strategies suffice to play optimally for both players in
one-player infinite arenas, then W is a parity condition.

Proof of one-to-two-player lift:

Memoryless determinacy in one-player infinite arenas
=⇒ W is a parity condition

=⇒ memoryless determinacy (in two-player infinite arenas).
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Two “limits” of the result

• There are simple memoryless-determined objectives (in infinite arenas)
which are not prefix-independent (e.g., reachability).
A bit disappointing to miss memoryless-determined objectives.

• What about strategies with finite memory?
 more and more prevalent in the literature.

Strategic characterization of ω-regular languages Pierre Vandenhove



Finite memory

Finite-memory strategy ≈ memory structure + next-action function.

Memory structure
Memory structure (M,minit, αupd): finite set of states M, initial state minit,
update function αupd : M × C → M.

Ex. to remember whether a or b was last played (not yet a strategy!):

a b

a

b

m1 m2

Given an arena A = (S, S1, S2,E ): next-action function αnxt : Si ×M → E .
Memoryless strategies are based on the “trivial” memory structure.
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Finite-memory determinacy

Finite-memory determinacy
An objective W is finite-memory-determined if there exists a finite
memory structure M such that strategies based on memoryM suffice to
play optimally for both players for all arenas A.

Remark
Usually, the definition inverts the order of the quantifiers. The order has a
big impact in finite arenas,16 but not in infinite arenas.

16Bouyer, Le Roux, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2020.
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One-to-two-player lifts

When does two-player zero-sum memory determinacy reduce to
one-player memory determinacy?

Arenas\Str. comp. Memoryless FM “∃M∀A” Mildly growing
Finite deterministic [GZ05]17 [BLORV20]18 [Koz21]19

Finite stochastic [GZ09]20 [BORV21]21

Infinite determin. P-Ind: [CN06]22 New work

17Gimbert and Zielonka, “Games Where You Can Play Optimally Without Any Memory”, 2005.
18Bouyer, Le Roux, et al., “Games Where You Can Play Optimally with Arena-Independent Finite Memory”, 2020.
19Kozachinskiy, “One-to-Two-Player Lifting for Mildly Growing Memory”, 2021.
20Gimbert and Zielonka, “Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global

Preferences”, 2009.
21Bouyer, Oualhadj, et al., “Arena-Independent Finite-Memory Determinacy in Stochastic Games”, 2021.
22Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Tool to get rid of prefix-independence: right congruence

Let L be a language of finite words on alphabet C .

Right congruence
For x , y ∈ C∗, x ∼L y if for all z ∈ C∗, xz ∈ L⇔ yz ∈ L.

Myhill-Nerode theorem23

L is regular if and only if ∼L has finite index.
The equivalence classes of ∼L correspond to the states of the minimal DFA
for L.

23Nerode, “Linear Automaton Transformations”, 1958.
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Tool to get rid of prefix-independence: right congruence

Let W be a language of infinite words (= an objective) on alphabet C .

Right congruence
For x , y ∈ C∗, x ∼W y if for all z ∈ Cω, xz ∈W ⇔ yz ∈W .

Links with ω-regularity?

• If W is ω-regular, then ∼W has finite index.
In this case, there is still a DFAM∼ associated with ∼W .
• The reciprocal is not true.

Examples:
• C = Q, W = MP≥0: ∼MP≥0 has index 1 but not ω-regular;
• C = {a, b}, W = C∗(ab)ω is ω-regular butM∼ is not “useful”;
• C = {a, b}, W = C∗aC∗aCω: ω-regular andM∼ is “useful”.
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Memory requirements in infinite arenas

• C = Q, W = MP≥0: ∼MP≥0 has index 1 but not ω-regular: infinite
memory;

• C = {a, b}, W = C∗(ab)ω is ω-regular butM∼ is not “useful”: the
minimal memory (blackboard) is useful;

• C = {a, b}, W = C∗aC∗aCω: ω-regular andM∼ is “useful”:
memoryless-determined.
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Insight for prefix-independence

Let W be an objective.

Replacement for prefix-independence
If a finite memory structure suffices to play optimally in one-player infinite
arenas for both players, then ∼W has finite index (soM∼ is finite).

Intuition: even without assuming prefix-independence (index of ∼W is 1),
we have a strong property on prefixes for free (index of ∼W is finite).

Strategic characterization of ω-regular languages Pierre Vandenhove



Main result

Let W be an objective.

Theorem
If a finite memory structureM suffices to play optimally in one-player
infinite arenas for both players, then W is recognized by a parity
automaton (M∼ ⊗M, p).

 ifM∼ ⊗M = (M,minit, αupd),

p : M × C → {0, . . . , n}.

Generalizes [CN06]24 (M∼ =M =Mtriv).

24Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
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Corollaries

Let W ⊆ Cω be an objective.

One-to-two-player FM lift (infinite arenas)
If W is finite-memory-determined in one-player infinite arenas, then W is
finite-memory-determined in two-player infinite arenas.

Characterization
W is finite-memory-determined if and only if W is ω-regular.

Proof: W is finite-memory-determined in one-player arenas
=⇒ W is recognized by a deterministic parity automaton (ω-regular).
=⇒ this parity automaton (as a memory) suffices in two-player arenas.25
=⇒ this parity automaton (as a memory) suffices in one-player arenas.

25Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
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Summary

Contributions
• New one-to-two-player lift for zero-sum games on infinite graphs.
• Strategic characterization of ω-regular languages.

Future work
• Other classes of arenas (e.g., finitely branching).
• Stochastic infinite arenas?

Thanks! Questions?
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