Characterizing  $\omega$ -Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

Patricia Bouyer<sup>1</sup>, Mickael Randour<sup>2</sup>, Pierre Vandenhove<sup>1,2</sup>

<sup>1</sup>Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France <sup>2</sup>F.R.S.-FNRS & UMONS – Université de Mons, Belgium

### March 17, 2022 - STACS 2022





# Outline

### Strategy synthesis for zero-sum turn-based games

Design **optimal** controllers for systems interacting with an **antagonistic** environment.

#### Interest in "simple" strategies

**Finite-memory determinacy**: when do **finite-memory** strategies suffice? Focus on games on **infinite** graphs.

#### Inspiration

Results about **memoryless determinacy**.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

P. Bouyer, M. Randour, P. Vandenhove

### Zero-sum turn-based games on graphs



- Two-player arenas:  $S_1$  ( $\bigcirc$ , for  $\mathcal{P}_1$ ) and  $S_2$  ( $\square$ , for  $\mathcal{P}_2$ ), edges E.
- Set C of **colors**. **Edges** are colored.
- **Objectives** are sets  $W \subseteq C^{\omega}$ . **Zero-sum**.
- **Strategy** for  $\mathcal{P}_i$ : function  $\sigma \colon E^* \to E$ .

# Memoryless determinacy

#### Question

For an objective, do simple strategies suffice to play optimally in all arenas?

A strategy  $\sigma$  of  $\mathcal{P}_i$  is *memoryless* if it is a function  $\not \in S_i \to E$ .



E.g., for Reach( $\top$ ), **memoryless** strategies suffice to play optimally. Also suffice for Büchi, parity... objectives.

# Memoryless determinacy

### Good understanding of memoryless determinacy in finite arenas

Sufficient conditions and characterizations of memoryless determinacy

- for **one** player,<sup>2,3,4,5</sup>
- for **both** players.<sup>6,7,8</sup>

What about infinite arenas?

<sup>&</sup>lt;sup>2</sup>Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

<sup>&</sup>lt;sup>3</sup>Gimbert, "Pure Stationary Optimal Strategies in Markov Decision Processes", 2007.

<sup>&</sup>lt;sup>4</sup>Bianco et al., "Exploring the boundary of half-positionality", 2011.

<sup>&</sup>lt;sup>5</sup>Gimbert and Kelmendi, "Submixing and Shift-Invariant Stochastic Games", 2014.

<sup>&</sup>lt;sup>6</sup>Gimbert and Zielonka, "When Can You Play Positionally?", 2004.

<sup>&</sup>lt;sup>7</sup>Aminof and Rubin, "First-cycle games", 2017.

<sup>&</sup>lt;sup>8</sup>Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

P. Bouyer, M. Randour, P. Vandenhove

# What about **infinite arenas**?

### Motivations

**1** Links between the **strategy complexity** in finite and **infinite** arenas?

Similar sufficient conditions/characterizations for infinite arenas? ~> Classical proof technique for finite arenas (induction on number of edges) not suited to infinite arenas.

## Greater memory requirements in infinite arenas

Colors  $C = \mathbb{Q}$ , objective W = "get a mean payoff  $\geq 0$ ".

- Memoryless strategies sufficient in finite arenas.<sup>9</sup>
- Infinite memory required in infinite arenas.<sup>10</sup>



 $\rightsquigarrow$  Possible to get 0 at the limit with infinite memory: loop increasingly many times in states  $s_n$ .

<sup>&</sup>lt;sup>9</sup>Ehrenfeucht and Mycielski, "Positional Strategies for Mean Payoff Games", 1979.

<sup>&</sup>lt;sup>10</sup>Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

P. Bouyer, M. Randour, P. Vandenhove

### Nice result

Let  $W \subseteq C^{\omega}$  be a **prefix-independent** objective.

### Characterization of **memoryless** determinacy<sup>11</sup>

If **memoryless strategies** suffice to play optimally for **both** players in all **infinite arenas**, then W is a **parity condition**.

**Parity condition**: there exists  $p: C \rightarrow \{0, \ldots, n\}$  such that

$$w = c_1 c_2 \ldots \in W \iff \limsup_i p(c_i)$$
 is even.

#### Characterization since parity conditions are memoryless-determined.<sup>12</sup>

 $<sup>^{11}</sup>$ Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

<sup>&</sup>lt;sup>12</sup>Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

P. Bouyer, M. Randour, P. Vandenhove

- What about strategies with finite memory? → More and more prevalent in the literature.
- 2 Some simple memoryless-determined objectives are not prefix-independent (e.g., Reach(⊤)).
   → This characterization misses memoryless-determined objectives.

Characterizing  $\omega$ -Regularity Through Finite-Memory Determinacy

P. Bouyer, M. Randour, P. Vandenhove

## Finite memory

Finite-memory strategy  $\approx$  memory structure + next-action function.

#### Memory structure

*Memory structure*  $(M, m_{init}, \alpha_{upd})$ : finite set of states M, initial state  $m_{init}$ , update function  $\alpha_{upd} \colon M \times C \to M$ .

Ex.: remember whether a or b was last seen:



Given an arena  $\mathcal{A} = (S, S_1, S_2, E)$ : *next-action function*  $\alpha_{nxt}$ :  $S_i \times M \to E$ .

Memoryless strategies use memory structure  $\rightarrow$ 



Characterizing  $\omega$ -Regularity Through Finite-Memory Determinacy

P. Bouver, M. Randour, P. Vandenhove

# Finite-memory determinacy

#### Finite-memory determinacy

An objective W is **finite-memory-determined** if **there exists a finite memory structure**  $\mathcal{M}$  that suffices to play optimally for both players in all arenas  $\mathcal{A}$ .

#### Remark

Usually, the definition inverts the order of the quantifiers. The order has an impact in **finite arenas**,  $^{13}$  but not in **infinite arenas**.

<sup>&</sup>lt;sup>13</sup>Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2020.

P. Bouyer, M. Randour, P. Vandenhove

# Get rid of prefix-independence? Right congruence

Let L be a language of **finite** words on alphabet C.

### Myhill-Nerode congruence

For  $x, y \in C^*$ ,  $x \sim_L y$  if for all  $z \in C^*$ ,  $xz \in L \Leftrightarrow yz \in L$ .

### Myhill-Nerode theorem<sup>14</sup>

*L* is regular if and only if  $\sim_L$  has finitely many equivalence classes. The equivalence classes of  $\sim_L$  correspond to the states of the minimal DFA for *L*.

<sup>&</sup>lt;sup>14</sup>Nerode, "Linear Automaton Transformations", 1958.

Characterizing  $\omega$ -Regularity Through Finite-Memory Determinacy

# Get rid of prefix-independence? Right congruence

Let W be a language of **infinite** words (= an objective) on alphabet C.

### Right congruence

For  $x, y \in C^*$ ,  $x \sim_W y$  if for all  $z \in C^{\omega}$ ,  $xz \in W \Leftrightarrow yz \in W$ .

### Links with $\omega$ -regularity?

- If W is ω-regular, then ~<sub>W</sub> has finitely many equivalence classes.
  In this case, there is a DFA M<sub>∼</sub> "prefix-classifier" associated with ~<sub>W</sub>.
- Reciprocal not true.

### W is **prefix-independent** if and only if $\sim_W$ has only one equivalence class.

# Four examples

| Objective                    | Prefix-classifier $\mathcal{M}_{\sim}$                                                            | Memory                                |
|------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|
| $C=\{0,\ldots,n\},$          |                                                                                                   |                                       |
| Parity condition             |                                                                                                   |                                       |
| $\mathcal{C}=\mathbb{Q}$ ,   |                                                                                                   | No finito structuro                   |
| $W = MP^{\geq 0}$            |                                                                                                   |                                       |
|                              | b, 1 b, 1                                                                                         |                                       |
| $\mathcal{C} = \{ a, b \}$ , | a, 1, a, 1, c                                                                                     | $\rightarrow$                         |
| $W=b^*ab^*aC^\omega$         | $\rightarrow$ $\rightarrow$ $\sim$ |                                       |
| $C = \{a, b\},$              |                                                                                                   |                                       |
| $W=C^*(ab)^\omega$           | $\rightarrow$                                                                                     | $a, 1 ( _{b,0} _{b,0} b, 1$           |
|                              | 1                                                                                                 | · · · · · · · · · · · · · · · · · · · |

# Main result

Let  $W \subseteq C^{\omega}$  be an objective.

### Theorem

If a finite memory structure  ${\cal M}$  suffices to play optimally in infinite arenas for both players, then

- ( $\mathcal{M}_{\sim}$  is finite), and
- *W* is recognized by a parity automaton (*M*<sub>∼</sub> ⊗ *M*, *p*).

 $\rightsquigarrow$  if  $\mathcal{M}_{\sim} \otimes \mathcal{M} = (M, m_{\mathsf{init}}, \alpha_{\mathsf{upd}})$ ,

$$p: \mathbf{M} \times \mathbf{C} \to \{0, \ldots, n\}.$$

Generalizes 
$$[\mathsf{CN06}]^{15}$$
 (where  $\mathcal{M}_\sim = \mathcal{M} = imes \bigcirc \mathcal{C}$  ).

<sup>&</sup>lt;sup>15</sup>Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

# Corollary

Let  $W \subseteq C^{\omega}$  be an objective.

Characterization

W is finite-memory-determined if and only if W is  $\omega$ -regular.

**Proof**. W is finite-memory-determined.

[BRV22] W is recognized by a deterministic parity automaton ( $\omega$ -regular).

 $\implies$  this parity automaton (as a memory) suffices in infinite arenas.  $^{16}$ 

<sup>&</sup>lt;sup>16</sup>Zielonka, "Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees", 1998.

P. Bouyer, M. Randour, P. Vandenhove

# Summary

### Contributions

- Strategic characterization of  $\omega$ -regularity, generalizing [CN06].<sup>17</sup>
- (*Not mentioned*) New **one-to-two-player lift** for zero-sum games on infinite graphs.

#### Future work

- Other classes of arenas (e.g., finitely branching)?
- Only one player has FM optimal strategies?

# Thanks!

<sup>&</sup>lt;sup>17</sup>Colcombet and Niwiński, "On the positional determinacy of edge-labeled games", 2006.

P. Bouyer, M. Randour, P. Vandenhove